题目列表(包括答案和解析)
问题提出
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
问题解决
如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.![]()
解:由图可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2.
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
类比应用
【小题1】已知:多项式M =2a2-a+1 ,N =a2-2a.试比较M与N的大小.
【小题2】已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边
满足a <b < c ,现将△ABC 补成长方形,使得△ABC的两个顶
点为长方形的两个端点,第三个顶点落在长方形的这一边的对边上。
①这样的长方形可以画 个;
②所画的长方形中哪个周长最小?为什么?![]()
拓展延伸
已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?![]()
某同学探究画直角三角形中锐角的平分线,方法如下:如图,在斜边AB上取一点E,使BE=BC,过点E作DE⊥AB,与AC交于点D,则BD为∠ABC的平分线,这种画法正确吗?并说明理由.
我们做如下的规定:如果一个三角形在运动变化时保持形状和大小不变,则把这样的三角形称为三角形板.
把两块边长为4的等边三角形板ABC和DEF叠放在一起,使三角形板DEF的顶点D与三角形板ABC的AC边中点O重合,把三角形板ABC固定不动,让三角形板DEF绕点O旋转,设射线DE与射线AB相交于点M,射线DF与线段BC相交于点N.
(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△ADM∽△CND.此时,AM·CN=________.
(2)将三角形板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AM·CN的值是否改变?说明你的理由.
(3)在(2)的条件下,设AM=x,两块三角形板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用)
将△ABC绕点A按逆时针方向旋转
度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[
,n].
(1)如图①,对△ABC作变换[60°,
]得△
,则
:S△ABC=________;直线BC与直线B′C′所夹的锐角为________度;
(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC作变换[
,n]得△
,使点B、C、
在同一直线上,且四边形AB
为矩形,求
和n的值;
(4)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[
,n]得△
,使点B、C、
在同一直线上,且四边形AB
为平行四边形,求
和n的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com