
如图,四边形ABCD中,E、F、G、H分别为各边的中点,顺次连结E、F、G、H,把四边形EFGH称为中点四边形.连结AC、BD,容易证明:中点四边形EFGH一定是平行四边形.
(1)如果改变原四边形ABCD的形状,那么中点四边形的形状也随之改变,通过探索可以发现:当四边形ABCD的对角线满足AC=BD时,四边形EFGH为菱形;
当四边形ABCD的对角线满足
AC⊥BD
AC⊥BD
时,四边形EFGH为矩形;
当四边形ABCD的对角线满足
AC=BD
AC=BD
时,四边形EFGH为正方形.
(2)试证明:S
△AEH+S
△CFG=
S
?ABCD;
(3)利用(2)的结论计算:如果四边形ABCD的面积为2012,那么中点四边形EFGH的面积是
1006
1006
(直接将结果填在横线上)