(1)AB∥EF,BC∥DE.∠1与∠2的关系是: 证明: (2)AB∥EF,BC∥DE. ∠1与∠2的关系是: 证明: (3)经过上述证明.我们可以得到一个真命题:如果 .那么 . (4)若两个角的两边互相平行.且一个角比另一个角的2倍少30°.则这两个角分别是多少度? 附加题:1.如图.在矩形ABCD中,AB=12cm.BC=6cm, 点P沿AB边从点A开始向点B以2cm/秒的速度移动.点Q沿DA边从点D开始向点A以1cm/秒的速度移动.如果P.Q同时出发.用t(秒)表示运动时间, 那么当t为何值时. 以Q.A.P为顶点的三角形与△ABC相似? 2.一条河的两岸有一段是平行的.在河的这一岸每相距5米在一棵树,在河的对岸每相距50米在一根电线杆.在这岸离开岸边25米处看对岸,看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河宽. 查看更多

 

题目列表(包括答案和解析)

证明:
(1)如图1,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE、CD为邻边作?CDFE,过点C作CG∥AB交EF于点G.连接BG、DE.
①∠ACB与∠GCD有怎样的数量关系?请说明理由.
②求证:△BCG≌△DCE.
(2)如图2,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.
①试说明AC=EF;
②求证:四边形ADFE是平行四边形.

查看答案和解析>>

证明:
(1)如图1,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE、CD为邻边作?CDFE,过点C作CG∥AB交EF于点G.连接BG、DE.
①∠ACB与∠GCD有怎样的数量关系?请说明理由.
②求证:△BCG≌△DCE.
(2)如图2,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.
①试说明AC=EF;
②求证:四边形ADFE是平行四边形.

查看答案和解析>>

证明:
(1)如图1,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE、CD为邻边作?CDFE,过点C作CG∥AB交EF于点G.连接BG、DE.
①∠ACB与∠GCD有怎样的数量关系?请说明理由.
②求证:△BCG≌△DCE.
(2)如图2,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.
①试说明AC=EF;
②求证:四边形ADFE是平行四边形.

查看答案和解析>>

如图,在下列矩形ABCD中,已知:AB=a,BC=b(a<b),假定顶点在矩形边上的菱形叫做矩形的内接菱形,现给出(Ⅰ)、(Ⅱ)、(Ⅲ)三个命题:
命题(Ⅰ):图①中,若AH=BG=AB,则四边形ABGH是矩形ABCD的内接菱形;
命题(Ⅱ):图②中,若点E、F、G和H分别是AB、BC、CD和DE的中点,则四边形EFGH是矩形ABCD的内接菱形;
命题(Ⅲ):图③中,若EF垂直平分对角线AC,变BC于点E,交AD于点F,交AC于点O,则四边形AECF是矩形ABCD的内接菱形.
请解决下列问题:
(1)命题(Ⅰ)、(Ⅱ)、(Ⅲ)都是真命题吗?请你在其中选择一个,并证明它是真命题或假命题;
(2)画出一个新的矩形内接菱形(即与你在(1)中所确认的,但不全等的内接菱形).
(3)试探究比较图①,②,③中的四边形ABGH、EFGH、AECF的面积大小关系.

查看答案和解析>>

如图,在下列矩形ABCD中,已知:AB=a,BC=b(a<b),假定顶点在矩形边上的菱形叫做矩形的内接菱形,现给出(Ⅰ)、(Ⅱ)、(Ⅲ)三个命题:
命题(Ⅰ):图①中,若AH=BG=AB,则四边形ABGH是矩形ABCD的内接菱形;
命题(Ⅱ):图②中,若点E、F、G和H分别是AB、BC、CD和DE的中点,则四边形EFGH是矩形ABCD的内接菱形;
命题(Ⅲ):图③中,若EF垂直平分对角线AC,变BC于点E,交AD于点F,交AC于点O,则四边形AECF是矩形ABCD的内接菱形.
请解决下列问题:
(1)命题(Ⅰ)、(Ⅱ)、(Ⅲ)都是真命题吗?请你在其中选择一个,并证明它是真命题或假命题;
(2)画出一个新的矩形内接菱形(即与你在(1)中所确认的,但不全等的内接菱形).
(3)试探究比较图①,②,③中的四边形ABGH、EFGH、AECF的面积大小关系.

查看答案和解析>>


同步练习册答案