2.求证:三角形的中位线平行于三角形的第三边.且等于第三边的一半. 查看更多

 

题目列表(包括答案和解析)

如图,证明定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.
已知:点D、E分别是△ABC的边AB、AC的中点.
求证:DE∥BC,DE=
12
BC.

查看答案和解析>>

如图,证明定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.
已知:点D、E分别是△ABC的边AB、AC的中点.
求证:DE∥BC,DE=数学公式BC.

查看答案和解析>>

是等边三角形,点是射线上的一个动点(点不与点重合),是以为边的等边三角形,过点的平行线,分别交射线于点,连接

(1)如图(a)所示,当点在线段上时,
①求证:
②探究:四边形是怎样特殊的四边形?并说明理由;
(2)如图(b)所示,当点的延长线上时,
①第(1)题中所求证和探究的两个结论是否仍然成立?(直接写出,不必说明理由)
②当点运动到什么位置时,四边形是菱形?并说明理由.

查看答案和解析>>

是等边三角形,点是射线上的一个动点(点不与点重合),是以为边的等边三角形,过点的平行线,分别交射线于点,连接

(1)如图(a)所示,当点在线段上时,

     ①求证:

②探究:四边形是怎样特殊的四边形?并说明理由;

(2)如图(b)所示,当点的延长线上时,

①第(1)题中所求证和探究的两个结论是否仍然成立?(直接写出,不必说明理由)

②当点运动到什么位置时,四边形是菱形?并说明理由.

 

查看答案和解析>>

是等边三角形,点是射线上的一个动点(点不与点重合),是以为边的等边三角形,过点的平行线,分别交射线于点,连接

(1)如图(a)所示,当点在线段上时,
①求证:
②探究:四边形是怎样特殊的四边形?并说明理由;
(2)如图(b)所示,当点的延长线上时,
①第(1)题中所求证和探究的两个结论是否仍然成立?(直接写出,不必说明理由)
②当点运动到什么位置时,四边形是菱形?并说明理由.

查看答案和解析>>


同步练习册答案