一次函数的图像如右图所示.当y>0时. x的取值范围是 A.x>2 B.x<2 C.x>3 D. x<3 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.

P从点O出发
平移次数
可能到达的
点的坐标
1 次
(0,2)(1,0)
2 次
 
3 次
 

实验操作
在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中.
观察思考
任一次平移,点P可能到达的点在我们学过的一次函数的图像上,如:平移1次后点P在函数________________的图像上;平移2次后点P在函数_________________的图像上
(3)规律发现
由此我们知道,平移n次后点P在函数__________________的图像上(请填写相应的解析式)

查看答案和解析>>

在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.

P从点O出发

平移次数

可能到达的

点的坐标

1 次

(0,2)(1,0)

2 次

 

3 次

 

实验操作

在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中.

观察思考

任一次平移,点P可能到达的点在我们学过的一次函数的图像上,如:平移1次后点P在函数________________的图像上;平移2次后点P在函数_________________的图像上

(3)规律发现

由此我们知道,平移n次后点P在函数__________________的图像上(请填写相应的解析式)

 

查看答案和解析>>

一次函数y=(a-1)x+a+1的大致图像如右图,则a的值为________________。

 


查看答案和解析>>

阅读材料:我们学过二次函数的图像的平移,如:将二次函数y=2x的图像沿x轴向左平移3个单位长度得到函数y=2(x+3)的图像,再沿y轴向下平移1个单位长度,得到函数y=2(x+3)-1的图像.
类似的,将一次函数y=2x的图像沿x轴向右平移1个单位长度可得到函数y=2(x-1)的图像,再沿y轴向上平移1个单位长度,得到函数y=2(x-1)+1的图像.
解决问题:
【小题1】将一次函数y= -x的图像沿x轴向右平移2个单位长度,再沿y轴向上平移3个单位长度,得到函数           的图像;
【小题2】将y=的图像沿y轴向上平移3个单位长度,得到函数       的图像,再沿x轴向右平移1个单位长度,得到函数         的图像;
【小题3】函数y=的图像可由哪个反比例函数的图像经过怎样的变换得到?

查看答案和解析>>

、(本题10分)我们知道,对于二次函数y=a(x+m)2+k的图像,可由函数y=ax2的图像  进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数y=ax2为“基本函数”,而称由它平移得到的二次函数y=a(x+m)2+k为“基本函数”y=ax2的“朋友函数”。左右、上下平移的路径称为朋友路径,对应点之间的线段距离称为朋友距离。

由此,我们所学的函数:二次函数y=ax2,函数y=kx和反比例函数都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”。

如一次函数y=2x-5是基本函数y=2x的朋友函数,由y=2x-5=2(x-1)-3朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=.

1.(1)探究一:小明同学经过思考后,为函数y=2x-5又找到了一条朋友路径为由基本函数y=2x先向      ,再向下平移7单位,相应的朋友距离为            

2.(2)探究二:已知函数y=x2-6x+5,求它的基本函数,朋友路径,和相应的朋友距离。

3.(3)探究三:为函数和它的基本函数,找到朋友路径,

     并求相应的朋友距离。

 

 

查看答案和解析>>


同步练习册答案