17.已知关于x的一次函数y=mx+3n和反比例函数y=的图象都过点.求: (1)一次函数和反比例函数的解析式,(2)两个函数图象的另一个交点的坐标. 查看更多

 

题目列表(包括答案和解析)

(11·台州)(14分)已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为
点B,点A、B关于原点O的对称点分别为C、D.若A、B、C、D中任何三点都不在一直
线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.
(1)如图1,求抛物线y=(x-2)2+1的伴随直线的解析式.
(2)如图2,若抛物线y=a(x-m)2+n(m>0)的伴随直线是y=x-3,伴随四边形的面积为12,求此抛物线的解析式.
(3)如图3,若抛物线y=a(x-m)2+n的伴随直线是y=-2x+b(b>0),且伴随四边形ABCD是矩形.
①用含b的代数式表示m、n的值;
②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示),若不存在,请说明理由.

查看答案和解析>>

(14分)已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0)、B(0,1)两点,且对称轴是y轴.经过点C(0,2)的直线l与x轴平行,O为坐标原点,P、Q为抛物线y=ax2+bx+c(a≠0)上的两动点.

【小题1】(1) 求抛物线的解析式;
【小题2】(2) 以点P为圆心,PO为半径的圆记为⊙P,判断直线l与⊙P的位置关系,并证明你的结论;
【小题3】(3) 设线段PQ=9,G是PQ的中点,求点G到直线l距离的最小值.

查看答案和解析>>

(本题8分)
已知:抛物线与x轴相交于A、B两点(A点在B点的左侧),顶点为P.
(1)求A、B、P三点坐标;
(2)画出此抛物线的简图,并根据简图直接写出当时,函数值y的取值范围

查看答案和解析>>

(11·台州)(14分)已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为

点B,点A、B关于原点O的对称点分别为C、D.若A、B、C、D中任何三点都不在一直

线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.

(1)如图1,求抛物线y=(x-2)2+1的伴随直线的解析式.

(2)如图2,若抛物线y=a(x-m)2+n(m>0)的伴随直线是y=x-3,伴随四边形的面积为12,求此抛物线的解析式.

(3)如图3,若抛物线y=a(x-m)2+n的伴随直线是y=-2x+b(b>0),且伴随四边形ABCD是矩形.

①用含b的代数式表示m、n的值;

②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示),若不存在,请说明理由.

 

查看答案和解析>>

(本题10分)已知:正方形ABCD的边长为a,P是边CD上一个动点不与C、D重合,CP=b,以CP为一边在正方形ABCD外作正方形PCEF,连接BF、DF.

【小题1】观察计算:(1)如图1,当a=4,b=1时,四边形ABFD的面积为          
(2)如图2,当a=4,b=2时,四边形ABFD的面积为          
(3)如图3,当a=4,b=3时,四边形ABFD的面积为          
【小题2】探索发现:(4)根据上述计算的结果,你认为四边形ABFD的面积与正方形ABCD的面积之间有怎样的关系?证明你的结论;

【小题3】综合应用:(5)农民赵大伯有一块正方形的土地(如图),由于修路被占去一块三角形的地方△BCE,但决定在DE的右侧补给赵大伯一块土地,补偿后的土地为四边形ABMD,且四边形ABMD的面积与原来正方形土地的面积相等,M、E、B三点要在一条直线上,请你画图说明,如何确定M点的位置.(要求尺规作图,保留作图痕迹)

查看答案和解析>>


同步练习册答案