.心理学家研究发现,一般情况下, 学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的注意力逐步增强, 中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散.经过实验分析可知, 学生的注意力y随时间t的变化规律有如下关系式: (1)讲课开始后第5分钟时与讲课开始后第25分钟时比较, 何时学生的注意力更集中? (2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟? (3)一道数学难题,需要讲解24分钟,为了效果较好,要求学生的注意力最低达到180,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目? 查看更多

 

题目列表(包括答案和解析)

(2004•黄冈)如图,Rt△ABO的顶点A是双曲线y=与直线y=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=
(1)求这两个函数的解析式;
(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.

查看答案和解析>>

(2004•黄冈)如图,Rt△ABO的顶点A是双曲线y=与直线y=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=
(1)求这两个函数的解析式;
(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.

查看答案和解析>>

(2004•黄冈)在直角坐标系XOY中,O为坐标原点,A,B,C三点的坐标分别为A(5,0),B(0,4),C(-1,0).点M和点N在x轴上(点M在点N的左边),点N在原点的右边,作MP⊥BN,垂足为P(点P在线段BN上,且点P与点B不重合),直线MP与y轴相交于点G,MG=BN.
(1)求经过A,B,C三点的抛物线的表达式;
(2)求点M的坐标;
(3)设ON=t,△MOG的面积为S,求S与t的函数关系式,并写出自变量t的取值范围;
(4)过点B作直线BK平行于x轴,在直线BK上是否存在点R,使△ORA为等腰三角形?若存在,请直接写出点R的坐标,若不存在,请说明理由.

查看答案和解析>>

(2004•黄冈)在直角坐标系XOY中,O为坐标原点,A,B,C三点的坐标分别为A(5,0),B(0,4),C(-1,0).点M和点N在x轴上(点M在点N的左边),点N在原点的右边,作MP⊥BN,垂足为P(点P在线段BN上,且点P与点B不重合),直线MP与y轴相交于点G,MG=BN.
(1)求经过A,B,C三点的抛物线的表达式;
(2)求点M的坐标;
(3)设ON=t,△MOG的面积为S,求S与t的函数关系式,并写出自变量t的取值范围;
(4)过点B作直线BK平行于x轴,在直线BK上是否存在点R,使△ORA为等腰三角形?若存在,请直接写出点R的坐标,若不存在,请说明理由.

查看答案和解析>>

(2004•黄冈)如图,Rt△ABO的顶点A是双曲线y=与直线y=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=
(1)求这两个函数的解析式;
(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.

查看答案和解析>>


同步练习册答案