边长为1的正方形的对角线的长度为 A. B. 1 C.2 D. 查看更多

 

题目列表(包括答案和解析)

将正方形的四个顶点用线段连接起来,怎样的连线最短?研究发现,并非连对角线最短,而是如图的连线更短(即用线段AE、BE、EF、CF、DF把四个顶点连接起来).已知图中ABCD是正方形,∠BAE=∠精英家教网ABE=∠FDC=∠FCD=30°,∠AEF=∠DFE且AE=DF.
(1)请你证明AD∥EF;
(2)设正方形边长为2,计算连线AE+BE+EF+CF+DF的长度.

查看答案和解析>>

将正方形的四个顶点用线段连接起来,怎样的连线最短?研究发现,并非连对角线最短,而是如图的连线更短(即用线段AE、BE、EF、CF、DF把四个顶点连接起来).已知图中ABCD是正方形,∠BAE=∠ABE=∠FDC=∠FCD=30°,∠AEF=∠DFE且AE=DF.
(1)请你证明ADEF;
(2)设正方形边长为2,计算连线AE+BE+EF+CF+DF的长度.

查看答案和解析>>

精英家教网对正方形ABCD分划如图①,其中E、F分别是BC、CD的中点,M、N、G分别是OB、OD、EF的中点,沿分划线可以剪出一副由七块部件组成的“七巧板”.
(1)如果设正方形OGFN的边长为l,这七块部件的各边长中,从小到大的四个不同值分别为l、x1、x2、x3,那么x1=
 
;各内角中最小内角是
 
度,最大内角是
 
度;用它们拼成的一个五边形如图②,其面积是
 

(2)请用这副七巧板,既不留下一丝空自,又不相互重叠,拼出2种边数不同的凸多边形,画在下面格点图中,并使凸多边形的顶点落在格点图的小黑点上;(格点图中,上下、左右相邻两点距离都为1)
(3)某合作学习小组在玩七巧板时发现:“七巧板拼成的凸多边形,其边数不能超过8”.你认为这个结论正确吗?请说明理由.注:不能拼成与图①或②全等的多边形!
精英家教网

查看答案和解析>>

把边长为1的正方形纸片沿对角线剪开,得△ABC和△DEF.然后,将△DEF的顶点D置于△ABC斜边中点处,使△DEF绕点D沿顺时针旋转.
(1)当△DEF旋转到DF过直角顶点C时(如图1)此时DF与AC的交点H与点C重合,试判断∠DGB与∠DGH的关系,并给以证明;
(2)当△DEF继续旋转的角度为α(0<α<45°)(如图2)时,(1)中的结论是否成立?若成立,请给以证明;若不成立,请说明理由.
精英家教网

查看答案和解析>>

14、以正方形ABCD的对角线BD为边作正三角形BDE(E与A在BD同侧),过E作EF⊥AD交DA的延长线于F,则∠AEF的度数是
45
°.

查看答案和解析>>


同步练习册答案