为了加强公民的节水意识.某市制订了如下水费标准:每户每月的用水量不超过10t时.水价为1.2:超过10t时.超过部分按1.8收费. 1) 设某户一个月用水量为x t.应交水费为y元.请写出y与x之间的关系式, 2) 设某户一个月用水量为x t.应交水费为y元.请写出y与x之间的关系式, 3)已知某户8月份交水费21元.请问:该户当月用水多少吨? 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)如图9,在直角坐标系xoy中,O是坐标原点,点A在x正半轴上,OA=cm,点B在y轴的正半轴上,OB=12cm,动点P从点O开始沿OA以cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BO以2cm/s的速度向点O移动.如果P、Q、R分别从O、A、B同时移动,移动时间为t(0<t<6)s.

(1)求∠OAB的度数.

(2)以OB为直径的⊙O‘与AB交于点M,当t为何值时,PM与⊙O‘相切?

(3)写出△PQR的面积S随动点移动时间t的函数关系式,并求s的最小值及相应的t值.

(4)是否存在△APQ为等腰三角形,若存在,求出相应的t值,若不存在请说明理由.

 

查看答案和解析>>

(本小题满分14分)

已知:如图,抛物线与y轴交于点C(0,),  与x轴交于点A、 B,点A的坐标为(2,0).

(1)求该抛物线的解析式;

(2)点P是线段AB上的动点,过点P作PD∥BC,交AC于点D,连接CP.当△CPD的面积最大时,求点P的坐标;

(3)若平行于x轴的动直线与该抛物线交于点Q,与直线BC交于点F,点M 的坐标为(,0).问:是否存在这样的直线,使得△OMF是等腰三角形?若存   在,请求出点Q的坐标;若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分5分)某校对九年级学生进行“综合素质”评价,评价的结果为A(优)、B(良好)、C(合格)、D(不合格)四个等级,现从中抽测了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如图所示的统计图,已知图中从左到右的四个长方形的高的比为:14:9:6:1,评价结果为D等级的有2人,请你回答以下问题:

1. (1)共抽测了多少人?

2. (2)样本中B等级的频率是多少?

3.(3) 如果要绘制扇形统计图,A等级在扇形统计图中所占的圆心角是多少度?

4.(4)该校九年级的毕业生共300人,假如“综合素质”等级为A或B的学生才能报考示范性高中,请你计算该校大约有多少名学生可以报考示范性高中?

 

查看答案和解析>>

25.(本小题满分14分)

如图13,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为

(1)求该二次函数的关系式;

(2)过y轴上的一点M(0,m)作y轴上午垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;

(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。

查看答案和解析>>

(本小题满分10分)

 

观察思考

某种在同一平面进行传动的机械装置如图14-1,图14-2是它的示意图.其工作原理是:滑块Q在平直滑道l上可以左右滑动,在Q滑动的过程中,连杆PQ也随之运动,并且PQ带动连杆OP绕固定点O摆动.在摆动过程中,两连杆的接点P在以OP为半径的⊙O上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点O作OH ⊥l于点H,并测得OH = 4分米,PQ = 3分米,OP = 2分米.

解决问题

(1)点Q与点O间的最小距离是        分米;点Q与点O间的最大距离是        分米;点Q在l上滑到最左端的位置与滑到最右端位置间的距离是        分米.

(2)

如图14-3,小明同学说:“当点Q滑动到点H的位置时,PQ与⊙O是相切的.”你认为他的判断对吗?为什么?

(3)①小丽同学发现:“当点P运动到OH上时,点P到l的距离最小.”事实上,还存在着点P到l距离最大的位置,此时,点P到l的距离是        分米;

②当OP绕点O左右摆动时,所扫过的区域为扇形,求这个扇形面积最大时圆心角的度数.

 

查看答案和解析>>


同步练习册答案