9.已知:x∶(y-x)=2∶1.3n∶2x=4∶y.则y∶m= 查看更多

 

题目列表(包括答案和解析)

(1)若关于x的一元二次方程ax2+bx+c=0的两根为x1,x2,则数学公式.根据这一性质,我们可以求出已知方程关于x1,x2的代数式的值.例如:已知x1,x2为方程x2-2x-1=0的两根,则x1+x2=______,x1•x2=______.那么x12+x22=(x1+x22-2x1x2=______.
请你完成以上的填空.
(2)阅读材料:已知m2-m-1=0,n2+n-1=0,且mn≠1.求数学公式的值.
解:由n2+n-1=0可知n≠0.
数学公式.∴数学公式
又m2-m-1=0,且mn≠1,即数学公式
∴m,数学公式是方程x2-x-1=0的两根.∴数学公式.∴数学公式=1.
(3)根据阅读材料所提供的方法及(1)的方法完成下题的解答.
已知2m2-3m-1=0,n2+3n-2=0,且mn≠1.求数学公式的值.

查看答案和解析>>

(1)新人教版初中数学教材中我们学习了:若关于x的一元二次方程ax2+bx+c=0的两根为x1,x2,则x1+x2=-
b
a
x1x2=
c
a
.根据这一性质,我们可以求出已知方程关于x1,x2的代数式的值.例如:已知x1,x2为方程x2-2x-1=0的两根,则x1+x2=
 
,x1•x2=
 
.那么x12+x22=(x1+x22-2x1x2=
 

请你完成以上的填空.
(2)阅读材料:已知m2-m-1=0,n2+n-1=0,且mn≠1.求
mn+1
n
的值.
解:由n2+n-1=0可知n≠0.
1+
1
n
-
1
n2
=0
.∴
1
n2
-
1
n
-1=0

又m2-m-1=0,且mn≠1,即m≠
1
n

∴m,
1
n
是方程x2-x-1=0的两根.∴m+
1
n
=1
.∴
mn+1
n
=1.
(3)根据阅读材料所提供的方法及(1)的方法完成下题的解答.
已知2m2-3m-1=0,n2+3n-2=0,且mn≠1.求m2+
1
n2
的值.

查看答案和解析>>

(1)新人教版初中数学教材中我们学习了:若关于x的一元二次方程ax2+bx+c=0的两根为x1,x2,则.根据这一性质,我们可以求出已知方程关于x1,x2的代数式的值.例如:已知x1,x2为方程x2-2x-1=0的两根,则x1+x2=______,x1•x2=______.那么x12+x22=(x1+x22-2x1x2=______.
请你完成以上的填空.
(2)阅读材料:已知m2-m-1=0,n2+n-1=0,且mn≠1.求的值.
解:由n2+n-1=0可知n≠0.
.∴
又m2-m-1=0,且mn≠1,即
∴m,是方程x2-x-1=0的两根.∴.∴=1.
(3)根据阅读材料所提供的方法及(1)的方法完成下题的解答.
已知2m2-3m-1=0,n2+3n-2=0,且mn≠1.求的值.

查看答案和解析>>

(1)新人教版初中数学教材中我们学习了:若关于x的一元二次方程ax2+bx+c=0的两根为x1,x2,则.根据这一性质,我们可以求出已知方程关于x1,x2的代数式的值.例如:已知x1,x2为方程x2-2x-1=0的两根,则x1+x2=______,x1•x2=______.那么x12+x22=(x1+x22-2x1x2=______.
请你完成以上的填空.
(2)阅读材料:已知m2-m-1=0,n2+n-1=0,且mn≠1.求的值.
解:由n2+n-1=0可知n≠0.
.∴
又m2-m-1=0,且mn≠1,即
∴m,是方程x2-x-1=0的两根.∴.∴=1.
(3)根据阅读材料所提供的方法及(1)的方法完成下题的解答.
已知2m2-3m-1=0,n2+3n-2=0,且mn≠1.求的值.

查看答案和解析>>

仔细阅读下面例题,解答问题:
例题:已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.
解:设另一个因式为(x+n),得
x2-4x+m=(x+3)(x+n)
则x2-4x+m=x2+(n+3)x+3n
n+3=-4
m=3n

解得:n=-7,m=-21
∴另一个因式为(x-7),m的值为-21
问题:仿照以上方法解答下面问题:
已知二次三项式2x2+3x-k有一个因式是(2x-5),求另一个因式以及k的值.

查看答案和解析>>


同步练习册答案