48.已知:△ABC中.D.E分别是AC.AB上一点.且AD= 求证:F是AB的中点 查看更多

 

题目列表(包括答案和解析)

已知在△ABC中,∠ACB=90°,AC=BC=4,现将一块边长足够大的直角三角板的直角顶点置于AB的中点O,两直角边分别经过点B、C,然后将三角板绕点O按顺时针方向旋转一个角度α(0°<α<90°),旋转后,直角三角板的直角边分别与AC、BC相交于点K、H,四边形CHOK是旋转过程中三角板与△ABC的重叠部分(如图所示).那么,在上述旋转过程中:
(1)线段BH与CK具有怎样的数量关系?四边形CHOK的面积是否发生变化?证明你发现的结论;
(2)连接HK,设BH=x.
①当△CHK的面积为
32
时,求出x的值.
②试问△OHK的面积是否存在最小值,若存在,求出此时x的值,若不存在,请说明理由.

查看答案和解析>>

已知在△ABC中,∠ACB=90°,AC=BC=4,现将一块边长足够大的直角三角板的直角顶点置于AB的中点O,两直角边分别经过点B、C,然后将三角板绕点O按顺时针方向旋转一个角度α(0°<α<90°),旋转后,直角三角板的直角边分别与AC、BC相交于点K、H,四边形CHOK是旋转过程中三角板与△ABC的重叠部分(如图所示).那么,在上述旋转过程中:
(1)线段BH与CK具有怎样的数量关系?四边形CHOK的面积是否发生变化?证明你发现的结论;
(2)连接HK,设BH=x.
①当△CHK的面积为时,求出x的值.
②试问△OHK的面积是否存在最小值,若存在,求出此时x的值,若不存在,请说明理由.

查看答案和解析>>

已知在△ABC中,∠ACB=90°,AC=BC=4,现将一块边长足够大的直角三角板的直角顶点置于AB的中点O,两直角边分别经过点B、C,然后将三角板绕点O按顺时针方向旋转一个角度α(0°<α<90°),旋转后,直角三角板的直角边分别与AC、BC相交于点K、H,四边形CHOK是旋转过程中三角板与△ABC的重叠部分(如图所示).那么,在上述旋转过程中:
(1)线段BH与CK具有怎样的数量关系?四边形CHOK的面积是否发生变化?证明你发现的结论;
(2)连接HK,设BH=x.
①当△CHK的面积为数学公式时,求出x的值.
②试问△OHK的面积是否存在最小值,若存在,求出此时x的值,若不存在,请说明理由.

查看答案和解析>>

24、已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.
(1)求证:BE=CD;
(2)求证:△AMN是等腰三角形;
(3)在图①的基础上,将△ADE绕点A按顺时针方向旋转,使D点落在线段AB上,其他条件不变,得到图②所示的图形.(1)、(2)中的两个结论是否仍然成立吗?请你直接写出你的结论.

查看答案和解析>>

已知:等腰三角形ABC的两腰AC和BC长为5厘米,底边AB长为6厘米,如图,现有一长为1厘米的线段MN在△ABC的底边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,线段MN运动的时间为t秒.
(1)t=
2
2
时,Q点与C重合;此时PM=
8
3
8
3
厘米;
(2)线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积;
(3)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求P、Q两点都在AC边上时四边形MNQP的面积S随运动时间t变化的函数关系式;
(4)简要说明从运动开始到终止四边形MNQP的面积S是如何变化的.

查看答案和解析>>


同步练习册答案