如图:在ABCD中.两对角线AC.BD互相垂直于O点. 且AC=6cm.BD=8cm.E为AB的中点.则EO=____cm 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,已知:在?ABCD中,E、F分别是AD、BC边的中点,G、H是对角线BD上的两点,且BG=DH,则下列结论中不正确的是(  )
A、GF⊥FHB、GF=EHC、EF与AC互相平分D、EG=FH

查看答案和解析>>

如图,已知:在?ABCD中,E、F分别是AD、BC边的中点,G、H是对角线BD上的两点,且BG=DH,则下列结论中不正确的是


  1. A.
    GF⊥FH
  2. B.
    GF=EH
  3. C.
    EF与AC互相平分
  4. D.
    EG=FH

查看答案和解析>>

(1)小明的爸爸在钉制平行四边形框架时,采用了下面的两种方法.
方法一:如图1,将两根木条AC、BD中点重叠,并用钉子固定,则四边形ABCD就是平行四边形.这样做的依据是:
对角线互相平分的四边形是平行四边形
对角线互相平分的四边形是平行四边形

方法二:如图2,将两根同样长的木条AB、CD平行放置,再木条AD、BC加固,则四边形ABCD就是平行四边形.
这样做的依据是:
一组对边平行且相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形

方法三:如图3,用两根长40cm的木条AD、BC和两根长30cm的木条AB、CD作为四边形的四条边,并把相等的木条作为相对的边用钉子固定,则四边形ABCD就是平行四边形.这样做的依据是:
两组对边分别相等的四边形是平行四边形
两组对边分别相等的四边形是平行四边形


(2)2002年世界数学家大会(ICM-2002)在北京召开,这节大会的会标的中央图案是经过艺术处理的“弦图”,它既标志着中国古代的数学成就,又像一只转动的风车,欢迎来自世界各地的数学家们!在这个“弦图”中,隐含着我们学过的一个重要的数学定理,这个定理可以用含a、b、c的等式来表示,它是:
a2+b2=c2
a2+b2=c2

查看答案和解析>>

我们学过圆内接三角形,同样,四个顶点在圆上的四边形是圆内接四边形,下面我们来研究它的性质.
(I)如图(1),连接AO、OC,则有数学公式数学公式.∵∠1+∠2=360°∴数学公式,同理∠BAD+∠BCD=180°,即圆内接四边形对角(相对的两个角)互补.
(II)在图(2)中,∠ECD是圆内接四边形ABCD的一个外角,请你探究外角∠DCE与它的相邻内角的对角(简称内对角)∠A的关系,并证明∠DCE与∠A的关系.
(III)应用:请你应用上述性质解答下题:如图(3)已知ABCD是圆内接四边形,F、E分别为BD、AD延长线上的点,如果DE平分
∠FDC,求证:AB=AC.

查看答案和解析>>

“Sab”的妙用

  我们学习了菱形,知道菱形的面积计算有一个比较特殊的方法,就是S菱形等于对角线乘积的一半.其实不仅菱形是这样的,只要对角线互相垂直的四边形面积均等于对角线乘积的一半,即Sab(其中a、b为两对角线的长度).

  证明如下:如图,在四边形ABCD中,对角线AC⊥BD,垂足为P.求证:S四边形ABCDAC·BD.

  证明:

  

解答问题:

(1)上述证明得到的性质可叙述为:________.

(2)已知:如图,等腰梯形ABCD中,AD∥BC,对角线AC⊥BD,且相交于点P,AD=3 cm,BC=7 cm,利用上述性质求梯形的面积.

查看答案和解析>>


同步练习册答案