如图1-2-30.已知AB=DC.AE=DF.CE=BF. 求斑点:AF=DE. 查看更多

 

题目列表(包括答案和解析)

精英家教网已知:如图,∠PAC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点,求圆心O到AP的距离及EF的长.

查看答案和解析>>

(2013•日照)问题背景:
如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.

(1)实践运用:
如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为
2
2
2
2

(2)知识拓展:
如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.

查看答案和解析>>

已知:如图,∠1=30°,∠C=90°,DE⊥AC,AB=a,求AC=
a
2
a
2

查看答案和解析>>

某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此太阳光线与地面成30°夹角.(
2
1.4,
3
1.7)
(1)求出树高AB;
(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了精英家教网变化,假设太阳光线于地面夹角保持不变(用图(2)解答)
①求树与地面成45°角时的影长;
②求树的最大影长.

查看答案和解析>>

18、如图,把一副三角板按如图所示放置,已知∠A=45°,∠E=30°,则两条斜边相交所成的钝角∠AOE的度数为
165
度.

查看答案和解析>>


同步练习册答案