△ABC三边为a.b.c.且a+b=4.ab=1.c=,则此三角形为( ) A)等腰三角形 B)直角三角形 C)等腰直角三角形 D)等边三角形 查看更多

 

题目列表(包括答案和解析)

已知在等腰△ABC中,AB=AC,点P为直线BC上一点,且P点到直线AB、AC的距离分别为4和1,则此三角形AB边上的高为_____.

查看答案和解析>>

已知在等腰△ABC中,AB=AC,点P为直线BC上一点,且P点到直线AB、AC的距离分别为4和1,则此三角形AB边上的高为_____.

查看答案和解析>>

如图1,△ABC为等边三角形,面积为S.D1、E1、F1分别是△ABC三边上的点,且AD1=BE1=CF1=数学公式AB,连接D1E1、E1F1、F1D1,可得△D1E1F1是等边三角形,此时△AD1F1的面积S1=数学公式S,△D1E1F1的面积S1=数学公式S.
(1)当D2、E2、F2分别是等边△ABC三边上的点,且AD2=BE2=CF2=数学公式AB时如图2,
①求证:△D2E2F2是等边三角形;
②若用S表示△AD2F2的面积S2,则S2=______;若用S表示△D2E2F2的面积S2′,则S2′=______.
(2)按照上述思路探索下去,并填空:
当Dn、En、Fn分别是等边△ABC三边上的点,ADn=BEn=CFn=数学公式AB时,(n为正整数)△DnEnFn是______三角形;
若用S表示△ADnFn的面积Sn,则Sn=______;若用S表示△DnEnFn的面积Sn′,则S′n=______.

查看答案和解析>>

如图1,△ABC为等边三角形,面积为S,D1、E1、F1分别是△ABC三边上的点,且AD1=BE2=CF1=AB,连接D1E1、E1F1、F1D1,可得△D1E1F1是等边三角形,此时△AD1F1的面积S1=S,△D1E1F1的面积S1=S。
(1)当D2、E2、F2分别是等边△ABC三边上的点,且AD2=BE2=CF2=AB时如图2,
①求证:△D2E2F2是等边三角形;
②若用S表示△AD2F2的面积S2,则S2=_______;若用S表示△D2E2F2的面积S2′,则S2′=______;
(2)按照上述思路探索下去,并填空:
当Dn、En、Fn分别是等边△ABC三边上的点,ADn=BEn=CFn=AB时,(n为正整数)△DnEnFn是 三角形;
若用S表示△ADnFn的面积Sn,则Sn=_______;
若用S表示△DnEnFn的面积Sn′,则S′n=________。

查看答案和解析>>

操作1:如图1,一三角形纸片ABC,分别取AB、AC的中点D、E,连接DE,沿DE将纸片剪开,并将其中的△ADE纸片绕点E旋转180°后可拼合(无重叠无缝隙)成平行四边形纸片BCFD.
操作2:如图2,一平行四边形纸片ABCD,E、F、G、H分别是AB、BC、CD、AD边的中点,沿EF剪开并将其中的△BFE纸片绕点E旋转180°到△AF1E位置;沿HG剪开并将其中的△DGH纸片绕点H旋转180°到△AG1H位置;沿FG剪开并将△CFG纸片放置于△AF1G1的位置,此时四张纸片恰好拼合(无重叠无缝隙)成四边形FF1G1G.则四边形FF1G1G的形状是
 

精英家教网
操作、思考并探究:
(1)如图3,如果四边形ABCD是任意四边形(不是梯形或平行四边形)的纸片,E、F、G、H分别是AB、BC、CD、AD的中点.依次沿EF、FG、GH、HE剪开得到四边形纸片EFGH.请判断四边形纸片EFGH的形状,并说明理由.
(2)你能将上述四边形纸片ABCD经过恰当地剪切后拼合(无重叠无缝隙)成一个平行四边形纸片?请在图4上画出对应的示意图.
精英家教网
(3)如图5,E、F、G、H分别是四边形ABCD各边的中点,若△AEH、△BEF、△CFG、△DGH的面积分别为S1、S2、S3、S4,且S1=2,S3=5,则四边形ABCD是面积是
 
.(不要求说明理由)

查看答案和解析>>


同步练习册答案