梯形ABCD中.AD∥BC.∠B=90º.AB=14cm.AD=18cm.BC=21cm. 点P从A点出发沿AD边以1cm/秒的速度向点D移动.点Q从C点出发沿CB边以 2cm/秒的速度向B点移动.且P.Q分别从A.C同时出发.移动时间为t秒 ① t为何值时.梯形PQCD恰好为等腰梯形? ② t为何值时.AB的中点E到PQ的距离为7cm? 查看更多

 

题目列表(包括答案和解析)

( 本题12分) 已知:如图,在梯形ABCD中,ADBCBC=DCCF平分∠BCDDFABBF的延长线交DC于点E

 

 

 

 

 

 

求证:1.(1)△BFC≌△DFC

2.(2)AD=DE

 

查看答案和解析>>

(本题12分)如图,在平面直角坐标系中,等腰梯形OABC,CB//OA,且点A在x轴正半轴上.已知C(2,4),BC= 4.
(1)求过O、C、B三点的抛物线解析式,并写出顶点坐标和对称轴;
(2)经过O、C、B三点的抛物线上是否存在P点(与原点O不重合),使得P点到两坐标轴的
距离相等.如果存在,求出P点坐标;如果不存在,请说明理由.

查看答案和解析>>

(本题12分) 如图,等腰梯形ABCD中,AD∥BC,点E是线段AD上的一个动点(E与A、D不重合),G、F、H分别是BE、BC、CE的中点.

(1)试探索四边形EGFH的形状,并说明理由;
(2)当点E运动到什么位置时,四边形EGFH是菱形?并说明理由;
(3)若(2)中的菱形EGFH是正方形,请探索线段EF与线段BC的关系,并说明你的理由.

查看答案和解析>>

(本题12分) 如图,等腰梯形ABCD中,AD∥BC,点E是线段AD上的一个动点(E与A、D不重合),G、F、H分别是BE、BC、CE的中点.

(1)试探索四边形EGFH的形状,并说明理由;

(2)当点E运动到什么位置时,四边形EGFH是菱形?并说明理由;

(3)若(2)中的菱形EGFH是正方形,请探索线段EF与线段BC的关系,并说明你的理由.

 

查看答案和解析>>

( 本题12分) 已知:如图,在梯形ABCD中,ADBCBC=DCCF平分∠BCDDFABBF的延长线交DC于点E

求证:【小题1】(1)△BFC≌△DFC
【小题2】(2)AD=DE

查看答案和解析>>


同步练习册答案