12.在等腰△ABC中.AB=AC.点D是直线BC上一点.DE∥AC交直线AB于E.DF∥AB交直线AC于点F.解答下列各问: (1)如图1.当点D在线段BC上时.有DE+DF=AB.请你说明理由, (2)如图2.当点D在线段BC的延长线上时.请你参考(1)画出正确的图形.并写出线段DE.DF.AB之间的关系并加以证明. 查看更多

 

题目列表(包括答案和解析)

操作实验:

如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称.

所以△ABD≌△ACD,所以∠B=∠C.

归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等.

根据上述内容,回答下列问题:

思考验证:

如图(4),在△ABC中,AB=AC.

试说明∠B=∠C的理由.(添加辅助线说明)

探究应用:

如图(5),CB⊥AB,垂足为B,DA⊥AB,垂足为A.E为AB的中点,AB=BC,CE⊥BD于F,连接DC、DE、AC,AC与DE交于点O.

(1)BE与AD是否相等?为什么?

(2)小明认为AC垂直平分线段DE,你认为对吗?说说你的理由.

(3)∠DBC与∠DCB相等吗?试说明理由.

查看答案和解析>>

请阅读下面的材料:

如图(1)所示,在等边三角形ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,BD=BC=AB.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.

请根据从上面材料中所得的信息解答下列问题:

(1)

在△ABC中,∠A∶∠B∶∠C=1∶2∶3,CD⊥AB于D,AB=a,则BD=________.

(2)

如图(2)所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于D,垂足为E,当BD=5 cm,∠B=30°时,△ACD的周长=________;

(3)

如图(3)所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,那么BE∶EA=________.

(4)

如图(4)所示,在△ABC中,∠C=90°,∠B=15°,DM是AB的垂直平分线,BD=8 cm,则AC=________;

(5)

如图(5)所示,在等边三角形ABC中,D、E分别是BC、AC上的点,且∠1=∠2,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并简要说明理由.

查看答案和解析>>

在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.

(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;

(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;

(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)

查看答案和解析>>


同步练习册答案