[例5]计算: [分析]本题项数较多.分母不相同.因此.在进行加减时.可考虑分组.分组的原则是使各组运算后的结果能出现分子为常数.相同或倍数关系.这样才能使运算简便. [解] = = = = = 查看更多

 

题目列表(包括答案和解析)

精英家教网“构造法”是一种重要方法,它没有固定的模式.要想用好它,需要有敏锐的观察、丰富的想象、灵活的构思.应用构造法解题的关键有二:一是要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行组合.
例:在△ABC中,AB、BC、AC三边长分别是
5
10
13
,求这个三角形的面积.
小辉在解这道题时,画一个正方形网格(每个正方形的边长为1),再在网格中画出格点(即的顶点都在小正方形的顶点处),如图1所示,这样不需要求的高,借助网格就能计算出它的面积.图中的面积,可以看成是一个的正方形的面积减去三个小三角形的面积:S△ABC=3×3-
1
2
×3×1-
1
2
×2×1-
1
2
×3×2=
7
2

思维拓展:已知△ABC的边长分别为
5a
、2
2a
17a
(a>0)
,请在下图所示的正方形网格中(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.

查看答案和解析>>

探索题:
(1)设n表示任意一个整数,则用含有n的代数式表示任意一个偶数为
2n
2n
,用含有n的代数式表示任意一个奇数为
2n+1或2n-1
2n+1或2n-1

(2)用举例验证的方法探索:任意两个整数的和与这两个数的差是否同时为奇数或同时为偶数?你的结论是
(填“是”或“否”);
(3)设a、b是任意的两个整数,试用“用字母表示数”的方法并分情况来说明a+b和a-b是否“同奇”或“同偶”?并进一步得出一般性的结论.
例:①设a=2m,b=2n.
则a+b=2m+2n=2(m+n);a-b=2m-2n=2(m-n);
此时a+b和a-b同时为偶数.
请你仿照以上的方法并考虑其余所有可能的情况加以计算和说明;
(4)以(3)的结论为基础进一步探索:-a+b、-a-b、a+b、a-b是否“同奇”“同偶”?
(5)应用第(2)、(3)、(4)的结论完成:在2014个自然数1,2,3,…,2013,2014的每一个数的前面任意添加“+”或“-”,则其代数和一定是
奇数
奇数
(填“奇数”或“偶数”)

查看答案和解析>>

某课题学习小组在一次活动中对三角形的内接正方形的有关问题进行了探讨:
定义:如果一个正方形的四个顶点都在一个三角形的边上,那么我们就把这个正方形叫做三角形的内接正方形.
结论:在探讨过程中,有三位同学得出如下结果:
甲同学:在钝角、直角、不等边锐角三角形中分别存在____个、________个、________个大小不同的内接正方形.
乙同学:在直角三角形中,两个顶点都在斜边上的内接正方形的面积较大.
丙同学:在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小.
任务:(1)填充甲同学结论中的数据;
(2)乙同学的结果正确吗?若不正确,请举出一个反例并通过计算给予说明,若正确,请给出证明;
(3)请你结合(2)的判定,推测丙同学的结论是否正确,并证明
(如图,设锐角△ABC的三条边分别为不妨设,三条边上的对应高分别为,内接正方形的边长分别为.若你对本小题证明有困难,可直接用”这个结论,但在证明正确的情况下扣1分).

查看答案和解析>>

(2011广西崇左,22,10分)(本小题满分10分)矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:

(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.

(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的_______相等;或者先证明四边形是菱形,在证明这个菱形有一个角是________ .

(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2,对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.

 

查看答案和解析>>

(2011四川凉山州,19,6分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例。如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律。例如,在三角形中第三行的三个数1,2,1,恰好对应展开式中的系数;第四行的四个数1,3,3,1,恰好对应着展开式中的系数等等。

(1)根据上面的规律,写出的展开式。
(2)利用上面的规律计算:

查看答案和解析>>


同步练习册答案