与函数y=-3x的图象关于x轴对称的图象的函数关系式为 . 与函数y=-3x 的图象关于y轴对称的函数关系式为 . 查看更多

 

题目列表(包括答案和解析)

函数(k≠0)的图象关于y轴对称,我们把函数(k≠0)叫做互为“镜子”函数.类似地,如果函数y=f(x)和y=h(x)的图象关于y轴对称,那么我们就把函数y=f(x)和y=h(x)叫做互为“镜子”函数.
(1)请写出函数y=3x-4的“镜子”函数:______;
(2)函数______的“镜子”函数是y=x2-2x+3;
(3)如图,一条直线与一对“镜子”函数(x>0)和(x<0)的图象分别交于点A、B、C,如果CB:AB=1:2,点C在函数(x<0)的“镜子”函数上的对应点的横坐标是,求点B的坐标.

查看答案和解析>>

函数数学公式数学公式(k≠0)的图象关于y轴对称,我们把函数数学公式数学公式(k≠0)叫做互为“镜子”函数.类似地,如果函数y=f(x)和y=h(x)的图象关于y轴对称,那么我们就把函数y=f(x)和y=h(x)叫做互为“镜作业宝子”函数.
(1)请写出函数y=3x-4的“镜子”函数:______;
(2)函数______的“镜子”函数是y=x2-2x+3;
(3)如图,一条直线与一对“镜子”函数数学公式(x>0)和数学公式(x<0)的图象分别交于点A、B、C,如果CB:AB=1:2,点C在函数数学公式(x<0)的“镜子”函数上的对应点的横坐标是数学公式,求点B的坐标.

查看答案和解析>>

在函数中,我们规定:当自变量增加一个单位时,因变量的增加量称为函数的平均变化率.例如,对于函数y=3x+1,当自变量x增加1时,因变量y=3(x+1)+1=3x+4,较之前增加3,故函数y=3x+1的平均变化率为3.
(1)①列车已行驶的路程s(km)与行驶的时间t(h)的函数关系式是s=300t,该函数的平均变化率是______;其蕴含的实际意义是______;
②飞机着陆后滑行的距离y(m)与滑行的时间x(s)的函数关系式是y=-1.5x2+60x,求该函数的平均变化率;
(2)通过比较(1)中不同函数的平均变化率,你有什么发现;
(3)如图,二次函数y=ax2+bx+c的图象经过第一象限内的三点A、B、C,过点A、B、C作x轴的垂线,垂足分别为D、E、F,AM⊥BE,垂足为M,BN⊥CF,垂足为N,DE=EF,试探究△AMB与△BNC面积的大小关系,并说明理由.

查看答案和解析>>

在函数中,我们规定:当自变量增加一个单位时,因变量的增加量称为函数的平均变化率.例如,对于函数y=3x+1,当自变量x增加1时,因变量y=3(x+1)+1=3x+4,较之前增加3,故函数y=3x+1的平均变化率为3.
(1)①列车已行驶的路程s(km)与行驶的时间t(h)的函数关系式是s=300t,该函数的平均变化率是______;其蕴含的实际意义是______;
②飞机着陆后滑行的距离y(m)与滑行的时间x(s)的函数关系式是y=-1.5x2+60x,求该函数的平均变化率;
(2)通过比较(1)中不同函数的平均变化率,你有什么发现;
(3)如图,二次函数y=ax2+bx+c的图象经过第一象限内的三点A、B、C,过点A、B、C作x轴的垂线,垂足分别为D、E、F,AM⊥BE,垂足为M,BN⊥CF,垂足为N,DE=EF,试探究△AMB与△BNC面积的大小关系,并说明理由.

查看答案和解析>>

如图,二次函数y=a(x2-3x-4)(其中a>0)的图象与x轴交于A、B两点,与y轴交于C点,且tan∠BAC=2.
(1)判断△ABC的形状,并说明理由;
(2)若以AC、BC为邻边作?ACBD,则D点关于x的对称点D′是否在该函数的图象上,为什么?
(3)在(2)的条件下过D′的直线将?ACBD的面积二等分,求这条直线的表达式.

查看答案和解析>>


同步练习册答案