m分别为何值时,直线y=x+2m-1满足下列条件? (1)经过原点, , (3)与x轴相交于点(.0), (4)y随x的增大而减小, (5)图象与y轴的交点在x轴下方. 查看更多

 

题目列表(包括答案和解析)

(本题满分10分)
如图,将OA = 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.

(1)点B的坐标为  ;用含t的式子表示点P的坐标为    ;(3分)
(2)记△OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(4分)
(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.(3分)

查看答案和解析>>

(11·永州)(本题满分10分)如图,已知二次函数的图象经过
A(),B(0,7)两点.
⑴ 求该抛物线的解析式及对称轴;
⑵ 当为何值时,
⑶ 在轴上方作平行于轴的直线,与抛物线交于C,D两点(点C在对称轴的左侧),
过点C,D作轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.

查看答案和解析>>

(本题满分10分)

如图,将OA = 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.

(1)点B的坐标为   ;用含t的式子表示点P的坐标为     ;(3分)

(2)记△OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(4分)

(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.(3分)

 

查看答案和解析>>

(11·永州)(本题满分10分)如图,已知二次函数的图象经过

A(),B(0,7)两点.

⑴ 求该抛物线的解析式及对称轴;

⑵ 当为何值时,

⑶ 在轴上方作平行于轴的直线,与抛物线交于C,D两点(点C在对称轴的左侧),

过点C,D作轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.

 

查看答案和解析>>

(本题满分10分)

如图,将OA = 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.

(1)点B的坐标为   ;用含t的式子表示点P的坐标为     ;(3分)

(2)记△OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(4分)

(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.(3分)

 

查看答案和解析>>


同步练习册答案