到角两边距离相等的点.必在这个角的 , 查看更多

 

题目列表(包括答案和解析)

如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.
例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.
(1)已知平行四边形ABCD,请你在两个备用图中分别画出一个只有一对等高点的四边ABCE,其中E点分别在四边形ABCD的形内、形外(要求:画出必要的辅助线);
(2)如图2,P是四边形ABCD对角线BD上任意一点(不与B、D点重合),S1、S2、S3、S4分别表示△ABP、△CBP、△ADP、△CDP的面积.若四边形ABCD只有一对等高点A、C,S1、S2、S3、S4四者之间的等量关系如何?

查看答案和解析>>

边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图l,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点. (1)如图2,画出菱形ABCD的一个准等距点. (2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法). (3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形AB CD的准等距点. (4)试研究四边形的准等距点个数的情况(说出相应四边形的特征及准等距点的个数,不必证明).  

           

查看答案和解析>>

25、四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图1,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.
(1)如图2,画出菱形ABCD的一个准等距点.
(2)如图3,作出四边形ABCD的一个准等距点.(尺规作图,保留作图痕迹,不要求写作法)
(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.试说明点P是四边形ABCD的准等距点.
(4)试研究四边形的准等距点个数的情况.(说出相应四边形的特征及此时准等距点的个数,不必证明)

查看答案和解析>>

四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图1,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.
(1)如图2,画出菱形ABCD的一个准等距点.
(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).
(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形ABCD的准等距点.
(4)试研究四边形的准等距点个数的情况.(说出相应四边形的特征及此时准等距点的个数,不必证明)
①当四边形的对角线互相垂直且任何一条对角线不平分另一条对角线或者对角线互相平分且不垂直时,准等距点的个数为
0
0
个;
②当四边形的对角线既不垂直,又不互相平分,且有一条对角线的中垂线经过另一对角线的中点时,准等距点的个数为
1
1
个;
③当四边形的对角线既不垂直又不互相平分,且任何一条对角线的中垂线都不经过另一条对角线的中点时,准等距点的个数为
2
2
个;
④当四边形的对角线互相垂直且至少有一条对角线平分另一条对角线时,准等距点有
无数
无数
个(注意点P不能画在对角线的中点上).

查看答案和解析>>

四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图1,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.
(1)如图2,画出菱形ABCD的一个准等距点.
(2)如图3,作出四边形ABCD的一个准等距点.(尺规作图,保留作图痕迹,不要求写作法)
(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.试说明点P是四边形ABCD的准等距点.
(4)试研究四边形的准等距点个数的情况.(说出相应四边形的特征及此时准等距点的个数,不必证明)

查看答案和解析>>


同步练习册答案