已知∠1和∠2是同位角.∠1=40°.∠2等于 ( ) A.160° B.140° C.40° D.无法确定 查看更多

 

题目列表(包括答案和解析)

在课外小组活动时,小慧拿来一道题(原问题)和小东、小明交流.
原问题:如图1,已知△ABC,∠ACB=90°,∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F.探究线段DF与EF的数量关系.
小慧同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.
小东同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60度.
小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.
请你参考小慧同学的思路,探究并解决这三位同学提出的问题:
(1)写出原问题中DF与EF的数量关系;
(2)如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;
(3)如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,精英家教网你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.

查看答案和解析>>

数学活动课上,甲、乙两位同学在研究一道数学题:“已知:如图1,在△ABC和△DEF中,∠A=∠D=90°,∠B=50°,∠E=32°,且BC=EF.试画直线m,l,使直线m将△ABC分成的两个小三角形与直线l将△DEF分成的两个小三角形分别相似,并标出每个小三角形各内角的度数.”
甲同学是这样做的:如图2,使得两个直角三角形的斜边重合,以斜边中点0为圆心,OB长为半径作出辅助圆,根据到定点的距离等于定长的点在圆上,可知A、B(E)、C(F)、D在⊙0上.设BD所在的直线m与AC所在的直线l交于点G,根据同弧所对的圆周角相等,由∠ABC=50°,∠DEF=32°,易求得∠ABG=DFG=18°,再由∠A=∠D=90°,可求得∠AGB=∠DGF=72°,∠GCB=40°,∠BGC=108°,从而△AGB∽△DGF.△GBC∽△GEF.
乙同学在甲同学的启发下,利用辅助圆又补充了其它分割方法.
你看明白甲同学的分割方法了吗?请你仿照甲同学的方法,把这道题其它的所有分割方法补充完整.
要求:不需写解答过程.如图2所示.利用辅助圆画出示意图,标明直线及每个小三角形各内角的度数即可.

查看答案和解析>>

在课外小组活动时,小伟拿来一道题(原问题)和小熊、小强交流.

原问题:如图1,已知△ABC, ∠ACB=90° , ∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE, 且DA=DB,  EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F. 探究线段DF与EF的数量关系.小伟同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.小熊同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小强同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考小慧同学的思路,探究并解决这三位同学提出的问题:

1.写出原问题中DF与EF的数量关系

2.如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;

3.如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中

得到的结论是否发生变化?请写出你的猜想并加以证明

 

查看答案和解析>>

在课外小组活动时,小伟拿来一道题(原问题)和小熊、小强交流.
原问题:如图1,已知△ABC, ∠ACB=90°, ∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE, 且DA=DB,  EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F. 探究线段DF与EF的数量关系.小伟同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.小熊同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小强同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考小慧同学的思路,探究并解决这三位同学提出的问题:
【小题1】写出原问题中DF与EF的数量关系
【小题2】如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;
【小题3】如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中

得到的结论是否发生变化?请写出你的猜想并加以证明

查看答案和解析>>

在课外小组活动时,小伟拿来一道题(原问题)和小熊、小强交流.
原问题:如图1,已知△ABC, ∠ACB=90°, ∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE, 且DA=DB,  EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F. 探究线段DF与EF的数量关系.小伟同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.小熊同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小强同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考小慧同学的思路,探究并解决这三位同学提出的问题:
【小题1】写出原问题中DF与EF的数量关系
【小题2】如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;
【小题3】如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中

得到的结论是否发生变化?请写出你的猜想并加以证明

查看答案和解析>>


同步练习册答案