11.下列各式:①,②,③,④,⑤.可以分解因式的有( ) A.3个 B.4个 C.5个 D.6个 查看更多

 

题目列表(包括答案和解析)

作乘法:

1.这两个乘法的结果是什么?所得的这两个等式是否可以作为因式分解的公式使用?用它可以分解有怎样特点的多项式?

2.用这两个公式把下列各式分解因式:

(1)

(2)

   

查看答案和解析>>

【附加题】阅读下面的材料,解答后面给出的问题:
两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如
a
a
2
+1
2
-1

(1)请你再写出两个二次根式,使它们互为有理化因式:
 

这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:
2
3
=
2
3
3
3
=
6
3
.
2
3-
3
=
2
(3+
3
)
(3-
3
)(3+
3
)
=
3
2
+
6
9-3
=
3
2
+
6
6

(2)请仿照上面给出的方法化简下列各式:
3-2
2
3+2
2
;②
1-b
1-
b
(b≠1)

(3)化简
3
5
-
2
时,甲的解法是:
3
5
-
2
=
3(
5
+
2
)
(
5
-
2
)(
5
+
2
)
=
5
+
2
,乙的解法是:
3
5
-
2
=
(
5
+
2
)(
5
-
2
)
5
-
2
=
5
+
2
,以下判断正确的是(  )
A、甲的解法正确,乙的解法不正确B、甲的解法不正确,乙的解法正确
C、甲、乙的解法都正确D、甲、乙的解法都不正确
(4)已知a=
1
5
-2
,b=
1
5
+2
,则
a2+b2+7
的值为(  )
A、5    B、6    C、3     D、4.

查看答案和解析>>

阅读下面的材料,解答后面给出的问题:
两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如数学公式数学公式数学公式数学公式
(1)请你再写出两个二次根式,使它们互为有理化因式:______.
这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:数学公式.数学公式
(2)请仿照上面给出的方法化简下列各式:
数学公式;②数学公式
(3)化简数学公式时,甲的解法是:数学公式=数学公式=数学公式,乙的解法是:数学公式=数学公式=数学公式,以下判断正确的是
A、甲的解法正确,乙的解法不正确B、甲的解法不正确,乙的解法正确
C、甲、乙的解法都正确D、甲、乙的解法都不正确
(4)已知数学公式,则数学公式的值为
A、5    B、6    C、3     D、4.

查看答案和解析>>

阅读并解答
看下面的问题:
从甲地到乙地,可以乘火车,也可以乘汽车.一天中,火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?
因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从甲地到乙地,所以共有3+2=5种不同的走法.
一般地,有如下原理:
分类计数原理:完成一件事,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法…在第n类办法中有mn种不同的方法.那么完成这件事共有N=m1+m2+…+mn种不同的方法.
再看下面的问题:
从甲地到乙地,要从甲地先乘火车到丙地,再于次日从丙地乘汽车到乙地.一天中,火车有3班,汽车有2班,那么两天中,从甲地到乙地共有多少种不同的走法?
这个问题与前一问题不同.在前一问题中,采用乘火车或乘汽车中的任何一种方式,都可以从甲地到乙地.而在这个问题中,必须经过先乘火车、后乘汽车两个步骤,才能从甲地到达乙地.
这里,因为乘火车有3种走法,乘汽车有2种走法,所以乘一次火车再接乘一次汽车从甲地到乙地,共有  3×2=6种不同的走法.
一般地,有如下原理:
分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法…做第n步有mn种不同的方法.那么完成这件事共有
N=m1×m2×…×mn种不同的方法.
例:书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.
(1)从书架上任取1本书,有多少种不同的取法?
(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?
(1)从书架上任取1本书,有3类办法:第1类办法是从第1层取1本计算机书,有4种方法;第2类办法是从第2层取1本文艺书,有3种方法;第3类办法是从第3层取1本体育书,有2种方法.根据分类计数原理,不同取法的种数是
N=m1+m2+m3=4+3+2=9
答:从书架上任取1本书,有9种不同的取法.
(2)从书架的第1、2、3层各取1本书,可以分成3个步骤完成:第1步从第1层取1本计算机书,有4种方法;第2步从第2层取1本文艺书,有3种方法;第3步从第3层取1本体育书,有2种取法.根据分步计数原理,从书架的第1、2、3层各取1本书,不同取法的种数是N=m1×m2×m3=4×3×2=24
答:从书架的第1、2、3层各取1本书,有24种不同的取法.
完成下列填空:
(1)从5位同学中产生1名组长,1名副组长有______种不同的选法.
(2)如图,一条电路在从A处到B处接通时,可以有______条不同的路线.
(3)用数字0、1、2、3、4、5组成______个没有重复数字的六位奇数.
(4)一种汽车牌照由2个英文字母后接4个数字组成,且2个英文字母不能相同,则不同牌照号码
精英家教网
的个数是______.

查看答案和解析>>

21、阅读并解答
看下面的问题:
从甲地到乙地,可以乘火车,也可以乘汽车.一天中,火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?
因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从甲地到乙地,所以共有   3+2=5种不同的走法.
一般地,有如下原理:
分类计数原理:完成一件事,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法…在第n类办法中有mn种不同的方法.那么完成这件事共有N=m1+m2+…+mn种不同的方法.
再看下面的问题:
从甲地到乙地,要从甲地先乘火车到丙地,再于次日从丙地乘汽车到乙地.一天中,火车有3班,汽车有2班,那么两天中,从甲地到乙地共有多少种不同的走法?
这个问题与前一问题不同.在前一问题中,采用乘火车或乘汽车中的任何一种方式,都可以从甲地到乙地.而在这个问题中,必须经过先乘火车、后乘汽车两个步骤,才能从甲地到达乙地.
这里,因为乘火车有3种走法,乘汽车有2种走法,所以乘一次火车再接乘一次汽车从甲地到乙地,共有  3×2=6种不同的走法.
一般地,有如下原理:
分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法…做第n步有mn种不同的方法.那么完成这件事共有
N=m1×m2×…×mn种不同的方法.
例:书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.
(1)从书架上任取1本书,有多少种不同的取法?
(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?
解:(1)从书架上任取1本书,有3类办法:第1类办法是从第1层取1本计算机书,有4种方法;第2类办法是从第2层取1本文艺书,有3种方法;第3类办法是从第3层取1本体育书,有2种方法.根据分类计数原理,不同取法的种数是
N=m1+m2+m3=4+3+2=9
答:从书架上任取1本书,有9种不同的取法.
(2)从书架的第1、2、3层各取1本书,可以分成3个步骤完成:第1步从第1层取1本计算机书,有4种方法;第2步从第2层取1本文艺书,有3种方法;第3步从第3层取1本体育书,有2种取法.根据分步计数原理,从书架的第1、2、3层各取1本书,不同取法的种数是N=m1×m2×m3=4×3×2=24
答:从书架的第1、2、3层各取1本书,有24种不同的取法.
完成下列填空:
(1)从5位同学中产生1名组长,1名副组长有
20
种不同的选法.
(2)如图,一条电路在从A处到B处接通时,可以有
8
条不同的路线.
(3)用数字0、1、2、3、4、5组成
288
个没有重复数字的六位奇数.
(4)一种汽车牌照由2个英文字母后接4个数字组成,且2个英文字母不能相同,则不同牌照号码的个数是
6500000

查看答案和解析>>


同步练习册答案