如7题图.已知AB=AC.AE=AD.则①△ABD≌△ACE.②△BOE≌△COD.③点O在∠BAC的平分线上.( ) A.都正确; B.都不正确; C.只有一个正确; D.只有一个不正确 查看更多

 

题目列表(包括答案和解析)

精英家教网精英家教网阅读并解答问题.
如图,已知:AD为△ABC的中线,求证:AB+AC>2AD.
证明:延长AD至E使得DE=AD,连接EC,则AE=2AD
∵AD为△ABC的中线
∴BD=CD
在△ABD和△CED中
(     )
(     )
(     )

∴△ABD≌△CED
∴AB=EC
在△ACE中,根据三角形的三边关系有
AC+EC
 
AE
而AB=EC,AE=2AD
∴AB+AC>2AD
这种辅助线方法,我们称为“倍长中线法”,请利用这种方法解决以下问题:
(1)如图,已知:CD为Rt△ABC的中线,∠ACB=90°,求证:CD=
1
2
AB

(2)把(1)中的结论用简洁的语言描述出来.

查看答案和解析>>

阅读并解答问题.
如图,已知:AD为△ABC的中线,求证:AB+AC>2AD.
证明:延长AD至E使得DE=AD,连接EC,则AE=2AD
∵AD为△ABC的中线
∴BD=CD
在△ABD和△CED中
数学公式
∴△ABD≌△CED
∴AB=EC
在△ACE中,根据三角形的三边关系有
AC+EC______AE
而AB=EC,AE=2AD
∴AB+AC>2AD
这种辅助线方法,我们称为“倍长中线法”,请利用这种方法解决以下问题:
(1)如图,已知:CD为Rt△ABC的中线,∠ACB=90°,求证:CD=数学公式
(2)把(1)中的结论用简洁的语言描述出来.

查看答案和解析>>

阅读并解答问题.
如图,已知:AD为△ABC的中线,求证:AB+AC>2AD。
证明:延长AD至E使得DE=AD,连接EC,则AE=2AD
∵AD为△ABC的中线,
∴BD=CD
在△ABD和△CED中
∴△ABD≌△CED,
∴AB=EC,
在△ACE中,根据三角形的三边关系有AC+EC ____AE
而AB=EC,AE=2AD
∴AB+AC>2AD
这种辅助线方法,我们称为“倍长中线法”,
请利用这种方法解决以下问题:
(1)如图,已知:CD为Rt△ABC的中线,∠ACB=90°,
求证:CD=
(2)把(1)中的结论用简洁的语言描述出来。

查看答案和解析>>


同步练习册答案