AD为△ABC中∠BAC的平分线.DM⊥AB于M.DN⊥AC于N.又∠DMN的度数为15°.则∠BAC的度数为 °. 查看更多

 

题目列表(包括答案和解析)

已知:△ABC中,∠ACB=2∠ABC,AD为∠BAC的平分线,E为线段AC上一点,过E作AD的垂线交直线AB于F.

(1)当E点与C点重合时(如图1),求证:BF=DE;
(2)连接BE交AD于点N,M是BF的中点,连接DM(如图2),若DM⊥BF,DC=4,S△ABD:S△ACD=3:2,求DN的长.

查看答案和解析>>

(2012•哈尔滨模拟)已知:△ABC中,∠ACB=2∠ABC,AD为∠BAC的平分线,E为线段AC上一点,过E作AD的垂线交直线AB于F.

(1)当E点与C点重合时(如图1),求证:BF=DE;
(2)连接BE交AD于点N,M是BF的中点,连接DM(如图2),若DM⊥BF,DC=4,S△ABD:S△ACD=3:2,求DN的长.

查看答案和解析>>

多彩数学,所有三角形都是等腰三角形
下面的推理过程,请你指出其错误之处.如图:△ABC中,∠BAC的平分线和BC边的垂直平分线相交于D,过点D作DM⊥AB于M,DN⊥AC于N.求证:AB=AC.
证明:连结BD、CD.
∵DM⊥AB,∴∠DMA=90°.∵DN⊥AC,∴∠AND=90°.∴∠AMD=∠AND=90°.又AD平分∠BAC,∴∠1=∠2.又∵AD=AD,∵△ADM≌△ADN(AAS),∴AM=AN,DM=DN.∵DE垂直平分BC,∴DB=DC.在Rt△BDM与Rt△CDN中,
BD=CD
DM=DN
∴Rt△BDM≌Rt△CDN(HL),∴BM=CN.又∵AM=AN,∴AB=AC,∴△ABC一定是等腰三角形.你认为对吗?
分三种情况:
(1)AB=AC时成立;
(2)AB>AC时,N在AC的延长线上;
(3)AB<AC时,M在AB的延长线上.

查看答案和解析>>

作业宝多彩数学,所有三角形都是等腰三角形
下面的推理过程,请你指出其错误之处.如图:△ABC中,∠BAC的平分线和BC边的垂直平分线相交于D,过点D作DM⊥AB于M,DN⊥AC于N.求证:AB=AC.
证明:连结BD、CD.
∵DM⊥AB,∴∠DMA=90°.∵DN⊥AC,∴∠AND=90°.∴∠AMD=∠AND=90°.又AD平分∠BAC,∴∠1=∠2.又∵AD=AD,∵△ADM≌△ADN(AAS),∴AM=AN,DM=DN.∵DE垂直平分BC,∴DB=DC.在Rt△BDM与Rt△CDN中,数学公式∴Rt△BDM≌Rt△CDN(HL),∴BM=CN.又∵AM=AN,∴AB=AC,∴△ABC一定是等腰三角形.你认为对吗?
分三种情况:
(1)AB=AC时成立;
(2)AB>AC时,N在AC的延长线上;
(3)AB<AC时,M在AB的延长线上.

查看答案和解析>>


同步练习册答案