如图的角平分线CD,BE相交于点O. ∠A=60度.则∠DOE= A. 80度 B. 100度 C. 120度 D. 140度 查看更多

 

题目列表(包括答案和解析)

如图,在平行四边形ABCD中,AB=5,BC=10,FAD的中点,CEABE,设∠ABCα(60°≤α<90°).

(1)当α=60°时,求CE的长;

(2)当60°<α<90°时,

①是否存在正整数k,使得∠EFDkAEF?若存在,求出k的值;若不存在,请说明理由.

②连接CF,当CE2CF2取最大值时,求tan∠DCF的值.

分析 (1)利用60°角的正弦值列式计算即可得解;

(2)①连接CF并延长交BA的延长线于点G,利用“角边角”证明△AFG和△CFD全等,根据全等三角形对应边相等可得CFGFAGCD,再利用直角三角形斜边上的中线等于斜边的一半可得EFGF,再根据ABBC的长度可得AGAF,然后利用等边对等角的性质可得∠AEF=∠G=∠AFG根据三角形的一个外角等于与它不相邻的两个内角的和可得∠EFC=2∠G,然后推出∠EFD=3∠AEF,从而得解;

②设BEx,在Rt△BCE中,利用勾股定理表示出CE2,表示出EG的长度,在Rt△CEG中,利用勾股定理表示出CG2,从而得到CF2,然后相减并整理,再根据二次函数的最值问题解答.

查看答案和解析>>

如图,△ABC中,∠BAC与∠ABC的角平分线AEBE相交于点E,延长AE交△ABC的外接圆于D点,连结BDCDCE,且∠BDA=60°.

求证:(1)BDE是等边三角形;

(2)若∠BDC=120°,猜想四边形BDCE是怎样的四边形,并证明你的猜想.

 

查看答案和解析>>

如图,在△ABC中,∠BAC与∠ABC的角平分线AE,BE相交于点E.延长AE交△ABC的外接圆于点D,连接BD,CD精英家教网,CE且∠BDA=60°.
(1)试判断△BDE的形状,并说明理由;
(2)若∠BDC=120°,猜想BDCE是怎样的四边形?说明理由.

查看答案和解析>>

如图,在△ABC中,∠BAC与∠ABC的角平分线AE,BE相交于点E.延长AE交△ABC的外接圆于点D,连接BD,CD作业宝,CE且∠BDA=60°.
(1)试判断△BDE的形状,并说明理由;
(2)若∠BDC=120°,猜想BDCE是怎样的四边形?说明理由.

查看答案和解析>>

如图,在△ABC中,∠BAC与∠ABC的角平分线AE,BE相交于点E.延长AE交△ABC的外接圆于点D,连接BD,CD,CE且∠BDA=60°.
(1)试判断△BDE的形状,并说明理由;
(2)若∠BDC=120°,猜想BDCE是怎样的四边形?说明理由.

查看答案和解析>>


同步练习册答案