若.且a是b.c的比例中项.则b : c = , 查看更多

 

题目列表(包括答案和解析)

(2013•本溪一模)(1)已知,如图①,Rt△ABC∽Rt△AB′C′,相似比为k,∠ACB=∠AC′B′=90°,且∠A=30°,将△AB′C′绕点A逆时针旋转α后,点C′恰好在边BC的延长线上,如图②,若四边形ABB′C′是矩形,求α的度数及k的值;
(2)如图③,等腰△ABC∽等腰△AB′C′,相似比为k,AB=AC,AB′=AC′,∠A=36°,将△AB′C′绕点A逆时针旋转α后,点B′恰好在BC边的延长线上,如图④,若AC′∥BB′,①判断四边形ABB′C′的形状并说明理由;②α=
72°
72°
,k=
-1+
5
2
-1+
5
2

查看答案和解析>>

如图,有一座大桥是靠抛物线型的拱形支撑的,它的桥面处于拱形中部(如我市的中山大桥就是这种模型).已知桥面在拱形之间的宽度CD为40m,桥面CD离拱形支撑的最高点O的距离为10m,且在正常水位时水面宽度AB为48m.
(1)建立如图所示的直角坐标系,求此抛物线的解析式;
(2)现有一辆载有救援物质的货车正以40km/h的速度必需经过此桥匀速开往乙地.当货车行驶到甲地时接到紧急通知:前方连降暴雨,造成水位以每小时0.3m的速度持续上涨(接到通知时水位已经比正常水位高出2m了,当水位到达桥面CD的高度时,禁止车辆通行).已知甲地距离此桥360km(桥长忽略不计),请问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度不得低于多少km/h?
精英家教网

查看答案和解析>>

(2012•河北)如图,点E是线段BC的中点,分别以BC为直角顶点的△EAB和△EDC均是等腰三角形,且在BC同侧.
(1)AE和ED的数量关系为
AE=ED
AE=ED
;AE和ED的位置关系为
AE⊥ED
AE⊥ED

(2)在图1中,以点E为位似中心,作△EGF与△EAB位似,点H是BC所在直线上的一点,连接GH,HD.分别得到图2和图3.
①在图2中,点F在BE上,△EGF与△EAB的相似比1:2,H是EC的中点.求证:GH=HD,GH⊥HD.
②在图3中,点F在的BE延长线上,△EGF与△EAB的相似比是k:1,若BC=2,请直接写CH的长为多少时,恰好使GH=HD且GH⊥HD(用含k的代数式表示).

查看答案和解析>>

10、2008年8月8日,举世瞩目的第29届奥运会将在中国首都北京举行,北京某体育馆的座位分东、西、南、北四侧,若东侧有40排座位,第一排有50个座位,后面每一排都比前一排多1个座位,则东侧每排的座位数m与这排的排数n的函数关系式为m=
n+49
.(1≤n≤40,且n是正整数)

查看答案和解析>>

阅读理解,回答问题.
在解决数学问题的过程中,有时会遇到比较两数大小的问题,解决这类问题的关键是根据命题的题设和结论特征,采用相应办法,其中巧用“作差法”是解决此类问题的一种行之有效的方法:若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.
例如:在比较m2+1与m2的大小时,小东同学的作法是:
∵(m2+1)-(m2)=m2+1-m2=1>0,
∴m2+1>m2
请你参考小东同学的作法,解决如下问题:
(1)请你比较4
3
与(2+
3
2的大小;
(2)已知a、b为实数,且ab=1,设M=
a
a+1
+
b
b+1
,N=
1
a+1
+
1
b+1
,试比较M、N的大小;
(3)一天,小明爸爸的男同事来家做客,已知爸爸的年龄比小明年龄的平方大7岁,爸爸同事的年龄是小明年龄的5倍,请你帮忙算一算,小明该称呼爸爸的这位同事为“叔叔”还是“大伯”?

查看答案和解析>>


同步练习册答案