已知直线y=kx+b经过点.且与坐标轴围成的三角形的面积为3.则k= .b= . 查看更多

 

题目列表(包括答案和解析)

已知二次函数y1=x2-(k+2)x+2,y2=x2-kx-2k+2,
(1)若二次函数y1=x2-(k+2)x+2与y轴的交点为A,与x轴的交点为B、C,△ABC的面积S=2
2
,求y1的解析式.
(2)不论k为何值时,二次函数y2=x2-kx-2k+2的图象都过定点,求这个定点坐标;若经过定点和原点的直线与y2中某个二次函数图象相切时,求这个二次函数y2的解析式.
(3)若二次函数y1=x2-(k+2)x+2与x轴的交点为(x1,0)、(x2,0),且x1<x2,二次函数y2=x2-kx-2k+2与x轴的交点为(x3,O)、(x4,0),且x3<x4,当这四个交点相间排列(即x1<x3<x2<x4或x3<x1<x4<x2)时,求k的取值范围.

查看答案和解析>>

已知二次函数y1=x2-(k+2)x+2,y2=x2-kx-2k+2,
(1)若二次函数y1=x2-(k+2)x+2与y轴的交点为A,与x轴的交点为B、C,△ABC的面积S=2数学公式,求y1的解析式.
(2)不论k为何值时,二次函数y2=x2-kx-2k+2的图象都过定点,求这个定点坐标;若经过定点和原点的直线与y2中某个二次函数图象相切时,求这个二次函数y2的解析式.
(3)若二次函数y1=x2-(k+2)x+2与x轴的交点为(x1,0)、(x2,0),且x1<x2,二次函数y2=x2-kx-2k+2与x轴的交点为(x3,O)、(x4,0),且x3<x4,当这四个交点相间排列(即x1<x3<x2<x4或x3<x1<x4<x2)时,求k的取值范围.

查看答案和解析>>

已知二次函数y1=x2-(k+2)x+2,y2=x2-kx-2k+2,
(1)若二次函数y1=x2-(k+2)x+2与y轴的交点为A,与x轴的交点为B、C,△ABC的面积S=2
2
,求y1的解析式.
(2)不论k为何值时,二次函数y2=x2-kx-2k+2的图象都过定点,求这个定点坐标;若经过定点和原点的直线与y2中某个二次函数图象相切时,求这个二次函数y2的解析式.
(3)若二次函数y1=x2-(k+2)x+2与x轴的交点为(x1,0)、(x2,0),且x1<x2,二次函数y2=x2-kx-2k+2与x轴的交点为(x3,O)、(x4,0),且x3<x4,当这四个交点相间排列(即x1<x3<x2<x4或x3<x1<x4<x2)时,求k的取值范围.

查看答案和解析>>

已知二次函数y1=x2-(k+2)x+2,y2=x2-kx-2k+2,
(1)若二次函数y1=x2-(k+2)x+2与y轴的交点为A,与x轴的交点为B、C,△ABC的面积S=2,求y1的解析式.
(2)不论k为何值时,二次函数y2=x2-kx-2k+2的图象都过定点,求这个定点坐标;若经过定点和原点的直线与y2中某个二次函数图象相切时,求这个二次函数y2的解析式.
(3)若二次函数y1=x2-(k+2)x+2与x轴的交点为(x1,0)、(x2,0),且x1<x2,二次函数y2=x2-kx-2k+2与x轴的交点为(x3,O)、(x4,0),且x3<x4,当这四个交点相间排列(即x1<x3<x2<x4或x3<x1<x4<x2)时,求k的取值范围.

查看答案和解析>>

如图,已知二次函数y=ax2+bx+c的图象经过三点A(-1,0),B(3,0),C(0,-3),它的顶点为M,且正比例函数y=kx的图象与二次函数的图象相交于D、E两点.
(1)求该二次函数的解析式和顶点M的坐标;
(2)若点E的坐标是(2,-3),且二次函数的值小于正比例函数的值时,试根据函数图象求出符合条件的自变量x的取值范围;
(3)试探究:抛物线的对称轴上是否存在点P,使△PAC为等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
精英家教网

查看答案和解析>>


同步练习册答案