如图:已知等边三角形ABC中.D是AC的中点.E是BC延长线上的一点. 且CE=CD.DM⊥BC.垂足为M.求证:M是BE的中点. 查看更多

 

题目列表(包括答案和解析)

如图:已知等腰三角形ABC中,AB=AC,D是BC边上的一点,DE⊥AB,DF⊥AC,E,F分别为垂足.DE+DF=2
2
,三角形ABC面积为3
2
+2
6
,求AB的长.

查看答案和解析>>

如图,已知等边三角形ABC中,点D、E、F分别为AB、AC、BC边的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).
(1)如图①,当点M在BC边上时,求证:MF=NE.
(2)若点M在点B左侧,其他条件不变时,请你在图②中作出相应的图形(不写作法),MF与NE相等的结论是否仍然成立?请直接写出结论,不必证明或说明理由.
(3)请你利用(2)中所作出的图形来判断点F是否在直线NE上?并说明理由.
精英家教网

查看答案和解析>>

已知等边三角形纸片ABC的边长为8,D为AB边上的点,过点D作DG∥BC交AC于点G.DE⊥BC于点E,过点G作GF⊥BC于点F,把三角形纸片ABC分别沿DG,DE,GF按图1所示方式折叠,点A,B,C分别落在点A′,B′,C′处.若点A′,B′,C′在矩形DEFG内或其边上,且互不重合,此时我们称△A′B′C′(即图中阴影部分)为“重叠三角形”.
(1)若把三角形纸片ABC放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),点A,B,C,D恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠三角形A′B′C′的面积;
(2)实验探究:设AD的长为m,若重叠三角形A′B′C′存在.试用含m的代数式表示重叠精英家教网三角形A′B′C′的面积,并写出m的取值范围.(直接写出结果)

查看答案和解析>>

已知等边三角形纸片ABC的边长为8,D为AB边上的点,过点D作DG∥BC交AC于点G.DE⊥BC于点E,过点G作GF⊥BC于点F,把三角形纸片ABC分别沿DG,DE,GF按图1所示方式折叠,点A,B,C分别落在点A′,B′,C′处.若点A′,B′,C′在矩形DEFG内或其边上,且互不重合,此时我们称△A′B′C′(即图中阴影部分)为“重叠三角形”.
(1)若把三角形纸片ABC放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),点A,B,C,D恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠三角形A′B′C′的面积;
(2)实验探究:设AD的长为m,若重叠三角形A′B′C′存在.试用含m的代数式表示重叠作业宝三角形A′B′C′的面积,并写出m的取值范围.(直接写出结果)

查看答案和解析>>

已知等边三角形纸片ABC的边长为8,D为AB边上的点,过点D作DG∥BC交AC于点G,DE⊥BC于点E,过点G作GF⊥BC于点F,把三角形纸片ABC分别沿DG,DE,GF按图1所示方式折叠,点A,B,C分别落在点A',B',C'处.若点A',B',C'在矩形DEFG内或其边上,且互不重合,此时我们称△A′B′C′(即图中阴影部分)为“重叠三角形”。
(1)若把三角形纸片ABC放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),点A,B,C,D恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠三角形A'B'C'的面积;
(2)实验探究:设AD的长为m,若重叠三角形A'B'C'存在,试用含m的代数式表示重叠三角形A'B'C'的面积,并写出m的取值范围(直接写出结果,备用图供实验,探究使用)。

查看答案和解析>>


同步练习册答案