函数的三种表示方法是: . . . 查看更多

 

题目列表(包括答案和解析)

某校数学研究性学习小组准备设计一种高为60cm的简易废纸箱.如图1,废纸箱的一面利用墙,放置在地面上,利用地面作底,其它的面用一张边长为60cm的正方形硬纸板围成,经研究发现:由于废纸箱的高是确定的,所以废纸箱的横截面图形面积越大,则它的容积越大.

(1)该小组通过多次尝试,最终选定下表中的简便且易操作的三种横截面图形,如图2,是根据这三种横截面图形的面积y(cm2)与x(cm)(见表中横截面图形所示)的函数关系式而绘制出的图象.请你根据有信息,在表中空白处填上适当的数、式,并完成y取最大值时的设计示意图;
(2)在研究性学习小组展示研究成果时,小华同学指出:图2中“底角为60°的等腰梯形”的图象与其他两个图象比较,还缺少一部分,应该补画,你认为他的说法正确吗?请简要说明理由。

查看答案和解析>>

(1)“三等分角”是数学史上一个著名问题,但数学家已经证明,仅用尺规不可能“三等分任意角”,但对于特定度数的已知角,如90°角、45°角等,是可以用尺规进行三等分的,如图a,∠AOB=90°,我们在边OB上取一点C,用尺规以OC为一边向∠AOB内部作等边△OCD,作射线OD,再用尺规作出∠DOB的角平分线OE,则射线OD、OE将∠AOB三等分,仔细体会一下其中的道理,然后用尺规把图b中的∠MON三等分(已知∠MON=45°);(不需写作法,但需保留作图痕迹,允许适当添加文字的说明)
(2)数学家帕普斯借助函数给出了一种“三等分锐角”的方法(如图c):将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上、边OA与函数的图象交于点P,以P为圆心、2OP长为半径作弧交图象于点R, 分别过点P和R作x轴和y轴的平行线,两直线相交于点M,连接OM得到∠MOB,则∠MOB=∠AOB,要明白帕普斯的方法,请研究以下问题:
①设,求直线OM对应的函数关系式(用含a、b的代数式表示);
②分别过点P和R作y轴和x轴的平行线,两直线相交于点Q,请说明Q点在直线OM上,并据此证明∠MOB=∠AOB。

查看答案和解析>>


同步练习册答案