解:设s=kt+b.则.解得:.所以s=-+90 查看更多

 

题目列表(包括答案和解析)

在解答“判断由线段长分别为,2,组成的三角形是不是直角三角形”一题中,小明这样做的:

  解:设a=,b=2,c=

  ∵a2+b2+22≠c2

  ∴由a,b,c组成的三角形不是直角三角形.

你认为小明的解答正确吗?请说明理由.

查看答案和解析>>

请同学们认真阅读下面材料,然后解答问题。(6分)

解方程(x2-1)2-5(x-1)+4=0

解:设y=x2-1

则原方程化为:y2-5y+4=0   ①   ∴y1=1 y2=4

当y=1时,有x2-1=1,即x2=2   ∴x=±

当y=4时,有x2-1=4,即x2=5   ∴x=±

∴原方程的解为:x1=- x2= x3=- x4=

解答问题:

⑴填空:在由原方程得到①的过程中,利用________________法达到了降次的目的,体现了________________的数学思想。

⑵解方程-3(-3)=0

 

查看答案和解析>>

请同学们认真阅读下面材料,然后解答问题。(6分)

解方程(x2-1)2-5(x-1)+4=0

解:设y=x2-1

则原方程化为:y2-5y+4=0   ①   ∴y1=1 y2=4

当y=1时,有x2-1=1,即x2=2   ∴x=±

当y=4时,有x2-1=4,即x2=5   ∴x=±

∴原方程的解为:x1=- x2= x3=- x4=

解答问题:

⑴填空:在由原方程得到①的过程中,利用________________法达到了降次的目的,体现了________________的数学思想。

⑵解方程-3(-3)=0

 

查看答案和解析>>

请同学们认真阅读下面材料,然后解答问题。(6分)
解方程(x2-1)2-5(x-1)+4=0
解:设y=x2-1
则原方程化为:y2-5y+4=0  ①  ∴y1=1 y2=4
当y=1时,有x2-1=1,即x2=2  ∴x=±
当y=4时,有x2-1=4,即x2=5   ∴x=±
∴原方程的解为:x1=- x2= x3=- x4=
解答问题:
⑴填空:在由原方程得到①的过程中,利用________________法达到了降次的目的,体现了________________的数学思想。
⑵解方程-3(-3)=0

查看答案和解析>>

请同学们认真阅读下面材料,然后解答问题。(6分)

解方程(x2-1)2-5(x-1)+4=0

解:设y=x2-1

则原方程化为:y2-5y+4=0   ①   ∴y1=1 y2=4

当y=1时,有x2-1=1,即x2=2   ∴x=±

当y=4时,有x2-1=4,即x2=5    ∴x=±

∴原方程的解为:x1=- x2= x3=- x4=

解答问题:

⑴填空:在由原方程得到①的过程中,利用________________法达到了降次的目的,体现了________________的数学思想。

⑵解方程-3(-3)=0

 

查看答案和解析>>


同步练习册答案