正方形的边长与对角线的比为: . 查看更多

 

题目列表(包括答案和解析)

如图1、2是两个相似比为的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合。

⑴ 在图3中,绕点旋转小直角三角形,使两直角边分别与交于点,如图4。

求证:

⑵ 若在图3中,绕点旋转小直角三角形,使它的斜边和延长线分别与交于点,如图5,此时结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由。

 


图4

 

⑶ 如图,在正方形中,分别是边上的点,满足的周长等于正方形的周长的一半,分别与对角线交于,试问线段能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由。

 


查看答案和解析>>

如图,在边长均为1的小正方形网格纸中,△OAB的顶点O、A、B均在格点上,且O是直角坐标系的原点,点A在x轴上。
(1)以O为位似中心,将△OAB放大,使得放大后的△OA1B1与 △OAB对应线段的比为2:1,画出
△OA1B1 (所画△OA1B1与△OAB在原点两侧);
(2)求出线段A1B1所在直线的函数关系式。

查看答案和解析>>

(2008?宁夏)如图,在边长均为1的小正方形网格纸中,△OAB的顶点O、A、B均在格点上,且O是直角坐标系的原点,点A在x轴上。
(1)将△OAB放大,使得放大后的△OA1B1与△OAB对应线段的比为2:1,画出△OA1B1,(所画△OA1B1与△OAB在原点两侧);
(2)求出线段A1B1所在直线的函数关系式。

查看答案和解析>>

翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。你能和小菲一起解决下列各问题吗?(以下各问只要求写出必要的计算过程和简洁的文字说明即可。)

1)如图,小菲同学把一个边长为1的正三角形纸片(即OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片向右翻转一周回到初始位置,求顶点O所经过的路程;并求顶点O所经过的路线;

2)小菲进行类比研究:如图,她把边长为1的正方形纸片OABC放在直线l2上,OA边与直线l2重合,然后将正方形纸片向右翻转若干次.她提出了如下问题:

问题:若正方形纸片OABC接上述方法翻转一周回到初始位置,求顶点O经过的路程;

问题:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是

3小菲又进行了进一步的拓展研究,若把这个正三角形的一边OA与这个正方形的一边OA重合(如图3),然后让这个正三角形在正方形上翻转,直到正三角形第一次回到初始位置(即OAB的相对位置和初始时一样),求顶点O所经过的总路程。

若把边长为1的正方形OABC放在边长为1的正五边形OABCD上翻转(如图),直到正方形第一次回到初始位置,求顶点O所经过的总路程。

4)规律总结,边长相等的两个正多边形,其中一个在另一个上翻转,当翻转后第一次回到初始位置时,该正多边形翻转的次数一定是两正多边形边数的___________

 

查看答案和解析>>

翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。你能和小菲一起解决下列各问题吗?(以下各问只要求写出必要的计算过程和简洁的文字说明即可。)
(1)如图①,小菲同学把一个边长为1的正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片向右翻转一周回到初始位置,求顶点O所经过的路程;并求顶点O所经过的路线;

图①
(2)小菲进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA边与直线l2重合,然后将正方形纸片向右翻转若干次.她提出了如下问题:

图②
问题①:若正方形纸片OABC接上述方法翻转一周回到初始位置,求顶点O经过的路程;
问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是
(3)①小菲又进行了进一步的拓展研究,若把这个正三角形的一边OA与这个正方形的一边OA重合(如图3),然后让这个正三角形在正方形上翻转,直到正三角形第一次回到初始位置(即OAB的相对位置和初始时一样),求顶点O所经过的总路程。

图③
②若把边长为1的正方形OABC放在边长为1的正五边形OABCD上翻转(如图④),直到正方形第一次回到初始位置,求顶点O所经过的总路程。

图④
(4)规律总结,边长相等的两个正多边形,其中一个在另一个上翻转,当翻转后第一次回到初始位置时,该正多边形翻转的次数一定是两正多边形边数的___________。

查看答案和解析>>


同步练习册答案