若a.b.c为△ABC的三边.且a2+b2+c2=ab+bc+ca.请说明△ABC是等边三角形. 查看更多

 

题目列表(包括答案和解析)

23、若△ABC的边长为a、b、c,且满足a2+b2+c2=ab+bc+ca,则△ABC的形状是(  )

查看答案和解析>>

若△ABC的边长为a、b、c,且满足a2+b2+c2=ab+bc+ca,则△ABC的形状是(  )
A.等腰三角形B.等边三角形C.任意三角形D.不能确定

查看答案和解析>>

若△ABC的边长为a、b、c,且满足a2+b2+c2=ab+bc+ca,则△ABC的形状是


  1. A.
    等腰三角形
  2. B.
    等边三角形
  3. C.
    任意三角形
  4. D.
    不能确定

查看答案和解析>>

综合题
阅读下列材料:
配方法是初中数学中经常用到的一个重要方法,学好配方法对我们学习数学有很大的帮助,所谓配方就是将某一个多项式变形为一个完全平方式,变形一定要是恒等的,例如解方程x2-4x+4=0,则(x-2)2=0∴x=2x2-2x+y2+4y+5=0
求x、y.则有(x2-2x+1)+(y2+4y+4)=0∴(x-1)2+(y+2)2=0.解得x=1,y=-2.x2-2x-3=0则有x2-2x+1-1-3=0∴(x-1)2=4.解得x=3或x=-1,根据以上材料解答下列各题:
(1)若a2+4a+4=0.求a的值.
(2)x2-4x+y2+6y+13=0.求(x+y)-2011的值.
(3)若a2-2a-8=0.求a的值.
(4)若a,b,c表示△ABC的三边,且a2+b2+c2-ac-ab-bc=0,试判断△ABC的形状,并说明理由.

查看答案和解析>>

综合题
阅读下列材料:
配方法是初中数学中经常用到的一个重要方法,学好配方法对我们学习数学有很大的帮助,所谓配方就是将某一个多项式变形为一个完全平方式,变形一定要是恒等的,例如解方程x2-4x+4=0,则(x-2)2=0∴x=2x2-2x+y2+4y+5=0
求x、y.则有(x2-2x+1)+(y2+4y+4)=0∴(x-1)2+(y+2)2=0.解得x=1,y=-2.x2-2x-3=0则有x2-2x+1-1-3=0∴(x-1)2=4.解得x=3或x=-1,根据以上材料解答下列各题:
(1)若a2+4a+4=0.求a的值.
(2)x2-4x+y2+6y+13=0.求(x+y)-2011的值.
(3)若a2-2a-8=0.求a的值.
(4)若a,b,c表示△ABC的三边,且a2+b2+c2-ac-ab-bc=0,试判断△ABC的形状,并说明理由.

查看答案和解析>>


同步练习册答案