6探索勾股定理(1) 本课重点:1.掌握勾股定理的内容, 查看更多

 

题目列表(包括答案和解析)

探索勾股定理时,我们发现“用不同的方式表示同一图形的面积”可以解决线段和(或差)的有关问题,这种方法称为面积法.请你运用面积法求解下列问题:在等腰三角形ABC中,AB=AC,BD为腰AC上的高.
(1)若BD=h,M是直线BC上的任意一点,M到AB、AC的距离分别为h1,h2
A、若M在线段BC上,请你结合图形①证明:h1+h2=h;
B、当点M在BC的延长线上时,h1,h2,h之间的关系为
 
.(请直接写出结论,不必证明)
(2)如图②,在平面直角坐标系中有两条直线l1:y=
34
x+6;l2:y=-3x+6.若l2上的一点M到l1的距离是3,请你利用以上结论求解点M的坐标.
精英家教网

查看答案和解析>>

探究学习:探索勾股定理时,我们发现“用不同的方式表示同一图形的面积”可以解决线段和(或差)的有关问题,这种方法称为面积法.请你运用面积法求解下列问题:在等腰三角形ABC中,AB=AC,BD为腰AC上的高(如图1).
(1)若等腰△ABC的面积为24 cm2,腰的长为8 cm,则腰AC上的高BD的长为
 
cm;
(2)若BD=h,M是直线BC上的任意一点,M到AB、AC的距离分别为h1、h2
①若M在线段BC上,请你结合图2证明:h1+h2=h;
②当点M在BC延长线上时,h1、h2、h之间的关系为
 
.(直接写出结论,不必证明)
精英家教网

查看答案和解析>>

探索勾股定理时,我们发现“用不同的方式表示同一图形的面积”可以解决线段和(或差)的有关问题,这种方法称为面积法.请你运用面积法求解下列问题:在等腰三角形ABC中,AB=AC,BD为腰AC上的高.
(1)若BD=h,M是直线BC上的任意一点,M到AB、AC的距离分别为h1,h2
A、若M在线段BC上,请你结合图形①证明:h1+h2=h;
B、当点M在BC的延长线上时,h1,h2,h之间的关系为______.(请直接写出结论,不必证明)
(2)如图②,在平面直角坐标系中有两条直线l1:y=x+6;l2:y=-3x+6.若l2上的一点M到l1的距离是3,请你利用以上结论求解点M的坐标.

查看答案和解析>>

探索勾股定理时,我们发现“用不同的方式表示同一图形的面积”可以解决线段和(或差)的有关问题,这种方法称为面积法。请你运用面积法求解下列问题:在等腰三角形ABC中,AB=AC,BD为腰AC上的高。

(1)若BD=h,M时直线BC上的任意一点,M到AB、AC的距离分别为

①   若M在线段BC上,请你结合图形①证明:= h;          

②   当点M在BC的延长线上时,,h之间的关系为      (请直接写出结论,不必证明)                         

(2)如图②,在平面直角坐标系中有两条直线:y = x + 6 ; :y = -3x+6 若上的一点M到的距离是3,请你利用以上结论求解点M的坐标。

                                 

                                          图②


查看答案和解析>>

探索勾股定理时,我们发现“用不同的方式表示同一图形的面积”可以解决线段和(或差)的有关问题,这种方法称为面积法.请你运用面积法求解下列问题:在等腰三角形ABC中,AB=AC,BD为腰AC上的高.
(1)若BD=h,M是直线BC上的任意一点,M到AB、AC的距离分别为h1,h2
A、若M在线段BC上,请你结合图形①证明:h1+h2=h;
B、当点M在BC的延长线上时,h1,h2,h之间的关系为______.(请直接写出结论,不必证明)
(2)如图②,在平面直角坐标系中有两条直线l1:y=x+6;l2:y=-3x+6.若l2上的一点M到l1的距离是3,请你利用以上结论求解点M的坐标.

查看答案和解析>>


同步练习册答案