如图 (2 ) 在平面直角坐标系中,平行四边形ABCD的顶点A. B. D的坐标分别是, 点C的坐标是 A .B. C. D. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图在平面直角坐标系xoy中,正方形OABC的边长为2厘米,点A、C分别在y轴的负半轴和x轴的正半轴上.抛物线y=ax2+bx+c经过点A,B和点D(4,
143

(1)求抛物线的解析式;
(2)如果点P由点A开始沿AB边以2厘米/秒的速度向点B移动,同时点Q由B点开始沿BC边以1厘米/秒的速度向点C移动.若P、Q中有一点到达终点,则另一点也停止运动,设P、Q两点移动的时间为t秒,S=PQ2(厘米2)写出S与t之间的函数关系式,并写出t的取值范围,当t为何值时,S最小;
(3)当s取最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.
(4)在抛物线的对称轴上求出点M,使得M到D,A距离之差最大?写出点M的坐标.

查看答案和解析>>

如图,在平面直角坐标系xoy中,抛物线与x正半轴交于点A,与y轴交于点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P、Q分别从O、C两点同时出发,点P以每秒3个单位的速度沿OA向终点A移动,点Q以每秒2个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)

(1)求A,B,C三点的坐标;

(2)当t为何值时,四边形PQCA为平行四边形?   

(3)当P、Q运动时,PF的值是否为定值,

 若是,求出此定值,若不是,请说明理由;

(4) 当t为何值时,△PQF为等腰三角形?

查看答案和解析>>

23、在平面直角坐标系中,O为坐标原点.
(1)已知点A(3,1),连接OA,作如下探究:
探究一:平移线段OA,使点O落在点B.设点A落在点C,若点B的坐标为(1,2),请在图1中作出BC,点C的坐标是
(4,4)

探究二:将线段OA绕点O逆时针旋转90度,设点A落在点D.则点D的坐标是
(-1,3)
;.

(2)已知四点O(0,0),A (a,b),C,B(c,d),顺次连接O,A,C,B.
①若所得到的四边形为平行四边形,则点C的坐标是
(a+c,b+d)

②若所得到的四边形是正方形,请直接写出a,b,c,d应满足的关系式.

查看答案和解析>>

在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在精英家教网两坐标轴上,且点A(0,2),点C(-1,0),如图所示;抛物线y=ax2+ax-2经过点B.
(1)求点B的坐标和抛物线的解析式;
(2)△ABC绕AC的中点旋转180°得到△ABC,试判断点B是否在抛物线上,请说明理由;
(3)点G是抛物线上的动点,在x轴上是否存在点P,使A、C、P、G这样的四个点为顶点的四边形是平行四边形?如果存在,请直接写出P点的坐标;如果不存在,请说明理由.

查看答案和解析>>

如图,平面直角坐标系中,抛物线:y=
1
2
x2-2x+3与y轴交于点A,P为拋物线上一点,且与点精英家教网A不重合.连接AP,以AO、AP为邻边作平行四边形OAPQ,PQ所在直线与x轴交于点B.设点P的横坐标为m.
(1)求点Q落在x轴上时m的值.
(2)若点Q在x轴下方,则m为何值时,线段QB的长取最大值,并求出这个最大值.
【参考公式:二次函数兴y=ax2+bx+c(a≠0)图象的顶点坐标为(-
b
2a
4ac-b2
4a
)

查看答案和解析>>


同步练习册答案