通过画图.我们可以发现: 一次函数y=kx+b(k≠0)的图象是 . 特别地.正比例函数y=kx(k≠0)的图象是经过 的一条 . 根据“ 点确定一条直线 .以后我们画一次函数图象时.只需确定 个点 二点法的练习: 例1.在同一平面直角坐标系中画出下列每组函数的图象. (1) y=2x与y=2x+3 x y=2x y=2x+3 (2)y=2x+1与. 解 y=2x+1 查看更多

 

题目列表(包括答案和解析)

(1)如图1,矩形ABCD中,AB:BC=2:3,点E、F分别在边AD和CD上,且AF⊥BE于O,求
AF
BE
的值;
(2)在上面的问题中,若
AF
BE
=k,通过变式,我们可以得到如下的两个命题:
①若将AF沿直线AB方向平移到PQ,将BE沿直线AD方向平移到RS,然后将PQ与RS同时绕点O旋转(保持PQ与RS垂直),则
PQ
RS
=k;
②设P、R、Q、S依次是矩形的边AB、BC、CD、DA上的点,若=k,则PQ⊥RS.精英家教网
(Ⅰ)判断命题的真假性:①
 
;②
 
;(在横线上填“真命题”或“假命题”)
(Ⅱ)若其中有假命题,请你在图3中,用画图的方法举反例进行说明;若以上两个命题都是真命题,请选择其中一个给予证明.

查看答案和解析>>

通过阅读所得的启示,回答问题(阅读中的结论可以直接使用).
阅读:在直线上有n个不同的点,则此图中共有多少条线段?
通过画图尝试,我们发现了如下的规律:
图形 直线上点的个数 共有线段条数 两者关系
2 1 1=0+1
3 3 3=0+1+2
4 6 6=0+1+2+3
5 10 10=0+1+2+3+4
n
n(n-1)
2
n(n-1)
2
=0+1+2+3+…+(n-1)
问题:(1)某学校七年级共有8个班级进行辩论比赛,规定采用单循环赛制(每两个班之间赛一场),请问该校七年级的辩论赛共需进行多少场辩论赛?
(2)往返上海与北京之间的某趟火车,共有15个车站(包括上海与北京),则共需要准备多少种不同的车票?

查看答案和解析>>

21、我们在解决数学问题时,经常采用“转化”(或“化归”)的思想方法,把待解决的问题,通过某种转化过程,归结到一类已解决或比较容易解决的问题.
譬如,在学习了一元一次方程的解法以后,进一步研究二元一次方程组的解法时,我们通常采用“消元”的方法,把二元一次方程组转化为一元一次方程;再譬如,在学习了三角形内角和定理以后,进一步研究多边形的内角和问题时,我们通常借助添加辅助线,把多边形转化为三角形,从而解决问题.
问题提出:如何把一个正方形分割成n(n≥9)个小正方形?
为解决上面问题,我们先来研究两种简单的“基本分割法”.
基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.
基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.

问题解决:有了上述两种“基本分割法”后,我们就可以把一个正方形分割成n(n≥9)个小正方形.
(1)把一个正方形分割成9个小正方形.
一种方法:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成4+5=9(个)小正方形.
另一种方法:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成6+3=9(个)小正方形.
(2)把一个正方形分割成10个小正方形.
方法:如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加3×2个小正方形,从而分割成4+3×2=10(个)小正方形.
(3)请你参照上述分割方法,把图⑥给出的正方形分割成11个小正方形(用钢笔或圆珠笔画出草图即可,不用说明分割方法)
(4)把一个正方形分割成n(n≥9)个小正方形.
方法:通过“基本分割法1”、“基本分割法2”或其组合把一个正方形分割成9个、10个和11个小正方形,再在此基础上每使用1次“基本分割法1”,就可增加3个小正方形,从而把一个正方形分割成12个、13个、14个小正方形,依次类推,即可把一个正方形分割成n(n≥9)个小正方形.
从上面的分法可以看出,解决问题的关键就是找到两种基本分割法,然后通过这两种基本分割法或其组合把正方形分割成n(n≥9)个小正方形.
类比应用:仿照上面的方法,我们可以把一个正三角形分割成n(n≥9)个小正三角形.
(1)基本分割法1:把一个正三角形分割成4个小正三角形(请你在图a中画出草图);
(2)基本分割法2:把一个正三角形分割成6个小正三角形(请你在图b中画出草图);
(3)分别把图c、图d和图e中的正三角形分割成9个、10个和11个小正三角形(用钢笔或圆珠笔画出草图即可,不用说明分割方法);

(4)请你写出把一个正三角形分割成n(n≥9)个小正三角形的分割方法(只写出分割方法,不用画图).

查看答案和解析>>

通过画图我们可以发现一次函数y=2x-1与反比例函数y的图象交点的个数为___个.

 

查看答案和解析>>


同步练习册答案