已知 ,则由此为三边的三角形是 三角形. 查看更多

 

题目列表(包括答案和解析)

18、已知|x-13|+|y-12|+(z-5)2=0,则由此为三边的三角形是
直角
三角形.

查看答案和解析>>

已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D.若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.
(1)如图1,求抛物线y=(x-2)2+1的伴随直线的解析式.
(2)如图2,若抛物线y=a(x-m)2+n(m>0)的伴随直线是y=x-3,伴随四边形的面积为12,求此抛物线的解析式.
(3)如图3,若抛物线y=a(x-m)2+n的伴随直线是y=-2x+b(b>0),且伴随四边形ABCD是矩形.
①用含b的代数式表示m、n的值;
②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示);若不存在,请说明理由.
精英家教网

查看答案和解析>>

已知:如图,平面直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为AD边上一动点(P与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E,当作业宝点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1
(1)BC、AP1的长;
(2)①求过B、P1、D三点的抛物线的解析式;
②求当⊙P与抛物线的对称轴相切时⊙P的半径r的值;
(3)以点E为圆心作⊙E与x轴相切,当直线L把矩形ABCD分成两部分的面积之比为3:5时,则⊙P和⊙E的位置关系如何?并说明理由.

查看答案和解析>>

已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D,若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线。
(1)如图1,求抛物线y=(x-2)2+1的伴随直线的解析式;
(2)如图2,若抛物线y=a(x-m)2+n(m>0)的伴随直线是y=x-3,伴随四边形的面积为12,求此抛物线的解析式;
(3)如图3,若抛物线y=a(x-m)2+n的伴随直线是y=-2x+b(b>0),且伴随四边形ABCD是矩形。
①用含b的代数式表示m、n的值;
②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示),若不存在,请说明理由。

查看答案和解析>>

已知:如图,平面直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为AD边上一动点(P与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E,当点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1
(1)BC、AP1的长;
(2)①求过B、P1、D三点的抛物线的解析式;
②求当⊙P与抛物线的对称轴相切时⊙P的半径r的值;
(3)以点E为圆心作⊙E与x轴相切,当直线L把矩形ABCD分成两部分的面积之比为3:5时,则⊙P和⊙E的位置关系如何?并说明理由.

查看答案和解析>>


同步练习册答案