题目列表(包括答案和解析)
(-3,2)与点Q关于原点对称,则点Q在第 象限.
已知抛物线的顶点为D(0,
),且经过点A(1,
),如下图所示.
(1)求这条抛物线的解析式;
(2)点F是坐标原点O关于该抛物线顶点D的对称点,坐标为F(0,
),我们可以用以下方法求线段FA的长度:过点A作AA1⊥x轴于A1,过点F作x轴的平行线,交AA1于点A2,则FA2=1,A2A=
-
=
,在Rt△AFA2中,FA=
=
.已知抛物线上另一点B的横坐标为2,求线段FB的长;
(3)若点P是该抛物线在第一象限内的任意一点,试探究线段FP的长度与点P纵坐标的大小关系,并证明你的猜想.
已知抛物线y=ax2+c的顶点为D(0,
),且过点A(1,
),如图所示.
(1)试求这条抛物线的代数表达式;
(2)点F是坐标原点O关于该抛物线顶点D的对称点,坐标为(0,
),我们可以用以下方法求线段FA的长度:过点A作AA1⊥x轴,过F作x轴的平行线交AA1于点A2,则FA2=1,A2A=
-
=
.在Rt△AFA2中,有FA=
=
.
已知抛物线上另一点B的横坐标为2,求线段FB的长.
(3)若点P是该抛物线上在第一象限内的任意一点,试探究线段FP的长度与点P的纵坐标的大小关系,并证明你的猜想.
已知:以原点O为圆心、5为半径的半圆与y轴交于A、G两点,AB与半圆相切于点A,点B的坐标为(3,yB)(如图1);过半圆上的点C(xC,yC)作y轴的垂线,垂足为D;Rt△DOC的面积等于
.
(1
)求点C的坐标;(2
)①命题撊缤-2,以y轴为对称轴的等腰梯形MNPQ与M1N1P1Q1的上底和下底都分别在同一条直线上,NP∥MQ,PQ∥P1Q1 ,且NP>MQ.设抛物线y=a0x2+h0过点P、Q,抛物线y=a1x2+h1过点P1、Q1,则h0>h1斒钦婷?猓?肽阋-Q(3,5)、P(4,3)和Q1(p,5)、P1(p+1,3)为例进行验证;②当图1中的线段BC在第一象限时,作线段BC关于y轴对称的线段FE,连接BF、CE,点T是线段BF上的动点(如图3);设K是过T、B、C三点的抛物线y=ax2+bx+c的顶点,求K的纵坐标yK的取值范围.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com