27.如图1.点E.F在正方形ABCD的边BC.CD上.且AE⊥BF于G. (1)AE与BF相等吗?请说明理由. (2)运用图形的平移.旋转方法.分析说明△ABE和△BCF可以通过怎样的平移和旋转而相互得到. 如图2.点H.E.F.L在正方形ABCD的边上.且LE⊥HF于G.图2通过怎样的方法可以得到图1.从而分析说明LE与HF相等. 查看更多

 

题目列表(包括答案和解析)

感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG ≌△BAF ;(不要求证明) 拓展:如图②,点B 、C 分别在∠MAN 的边AM 、AN 上,点E 、F 在∠MAN 内部的射线AD 上,∠1 、∠2 分别是△ABE 、△CAF 的外角,已知AB=AC ,∠1= ∠2= ∠BAC ,求证:△ABE ≌△CAF .
应用:如图③,在等腰三角形ABC 中,AB=AC ,AB >BC .点D 在边BC 上,CD=2BD ,点E 、F 在线段AD 上,∠1= ∠2= ∠BAC,若△ABC 的面积为9 ,则△ABE 与△CDF 的面积之和为______。

查看答案和解析>>

感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)
拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△CAF.
应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为______.

查看答案和解析>>

感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)
拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△CAF.
应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为________.

查看答案和解析>>

如图,已知在正方形ABCD中,P为BC上的一点,E是边BC延长线上一点,连接AP过点P作PF⊥精英家教网AP,与∠DCE的平分线CF,相交于点F,连接AF,与边CD相交于点G,连接PG.
(1)求证:①∠PAB=∠FPC;②AP=FP;
(2)试判断PB、DG、PC,这三条线段存在怎样的数量关系,并说明理由.

查看答案和解析>>

如图,已知在正方形ABCD中,AB=2,P是边BC上的任意一点,E是边BC延长线上精英家教网一点,连接AP.过点P作PF⊥AP,与∠DCE的平分线CF相交于点F.连接AF,与边CD相交于点G,连接PG.
(1)求证:AP=FP;
(2)⊙P、⊙G的半径分别是PB和GD,试判断⊙P与⊙G两圆的位置关系,并说明理由;
(3)当BP取何值时,PG∥CF.

查看答案和解析>>


同步练习册答案