19..已知△ABC.其中AB=AC.①作AB的垂直平分线DE交AB于D.交AC于点E.连结BE(尺规作图.不写作法.保留作图痕迹). ②在①的基础上.若AB=8.△BCE的周长为14.求BC的长. 图(6) 查看更多

 

题目列表(包括答案和解析)

如图,已知△ABC,其中AB=AC

(1)作AB的垂直平分线DE,交AB于点D,交AC于点E;连结BE.(尺规作图,不写作法,保留作图痕迹)

(2)在(1)的基础上,若AB=8,△BCE的周长为14,求BC的长.

查看答案和解析>>

如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下精英家教网列问题:
(1)当t=2时,判断△BPQ的形状,并说明理由;
(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;
(3)作QR∥BA交AC于点R,连接PR,当t为何值时,△APR∽△PRQ.

查看答案和解析>>

如图,已知△ABC中,∠BAC=90゜,AB=AC,点P为BC边上一动点(BP<CP),分别过B、C作BE⊥AP于E,CF⊥AP于F.
(1)求证:EF=CF-BE.
(2)若点P为BC延长线上一点,其它条件不变,则线段BE、CF、EF是否存在某种确定的数量关系?画图并直接写出你的结论.

查看答案和解析>>

如图①,已知△ABC和△ACD是两个全等的等边三角形,用它们拼成四边形ABCD.
(1)四边形ABCD是什么特殊的四边形,说明理由;
(2)分别延长△ABC的边AB,AC到M,N,使AM=AN,连接MN得到△AMN,再将△AMN绕点A按逆时针方向旋转40°,其边与四边形ABCD的两边BC,CD分别相交于点E,F,请你探索线段BE与CF之间的数量关系,并说明理由;
(3)按(2)的操作,若将△AMN绕点A按逆时针方向旋转α角(60°<α<80°),其边与四边形ABCD的两边BC,CD的延长线分别相交于点E,F,在图②中画出图形,判断此时(2)中的结论是否成立,并说明理由.

查看答案和解析>>

如图,已知△ABC和△ABD均为等腰直角三角形,∠ACB=∠BAD=90°,点P为边AC上任意一点(点P不与A、C两点重合),作PE⊥PB交AD于点E,交AB于点F.
(1)求证:∠AEP=∠ABP.
(2)猜想线段PB、PE的数量关系,并证明你的猜想.
(3)若P为AC延长线上任意一点(如图②),PE交DA的延长线于点E,其他条件不变,(2)中的结论是否成立?请证明你的结论.

查看答案和解析>>


同步练习册答案