19.观察图6-9所示的扇形统计图.并回答问题: (1)全世界共有 个大洲. 的面积最大, (2) 这两个洲的面积之和最接近地球总陆地面积的一半, (3)图中各个扇形分别代表了 . 所有百分比之和是 , (4) 地球的表面积为5.1亿平方千米.而陆地面积为1.49 亿平方千米.仅占整个地球表面积的29.2% .则亚洲的 陆地面积约为 万平方千米. 它占地球的表面积约为 . 查看更多

 

题目列表(包括答案和解析)

  (本小题满分12分)

 1. (1)观察发现

    如(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小.

    做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P

    再如(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.

做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为       . (2分)

        

 

2.(2)实践运用

   如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,求PM+PN的最小值。(5分)

3.(3)拓展延伸

    如(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.  (5分)

 

查看答案和解析>>

  (本小题满分12分)

 1. (1)观察发现

    如(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小.

    做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P

    再如(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.

做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为        . (2分)

        

 

2.(2)实践运用

   如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,求PM+PN的最小值。(5分)

3.(3)拓展延伸

    如(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.  (5分)

 

查看答案和解析>>

 如果定义:“到三角形的两个顶点距离相等的点,叫做此三角形的准外心.”例如:如图1所示,若PC=PB,则称点P为△ABC准外心。               (2+4+6=12分)

(1) 观察并思考,△ABC的准外心有__________个.

(2) 如图2,△ABC是等边三角形,CD⊥AB,准外心点 P在高CD上,且PD=,在图中画出点P点,求∠APB的度数.

(3) 已知△ABC为直角三角形,斜边BC=5,AB=3,准外心.PAC边上,在图中画出P点,并求PA的长.

查看答案和解析>>

25、友情提示:本题有A、B两题,请你任选一题作答,A题满分9分,B题满分12分.若两题都做,只能按A题评分.
(A题)如图所示,四边形OABC与ODEF均为正方形,CF交OA于P,交DA于Q.
(1)求证:AD=CF.
(2)AD与CF垂直吗?说说你的理由.
(3)当正方形ODEF绕O点在平面内旋转时,(1),(2)的结论是否有变化(不需说明理由).
(B题)如图所示,用两个全等的正方形ABCD和CDFE拼成一矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,且将直角三角尺绕点D按逆时针方向旋转.

(1)当直角三角尺的两直角边分别与矩形ABEF的两边BE、EF相交于点G、H时,通过观察或测量BG与EH的长度,你能得到什么结论?并证明你的结论.
(2)当直角三角尺的两直角边分别与BE的延长线、EF的延长线相交于点G、H时,你在(1)中得到的结论还成立吗?请画出图形并简要说明理由.

查看答案和解析>>

(本题满分12分)在四边形ABCD中,AD=a,CD=b,点E在射线BA上,点F在射线BC上.

观察计算:

(1)如图①,若四边形ABCD是矩形,E是AB的中点.F是BC的中点,则四边形DEBF    的面积S四边形DEBF=_______.

(2)若四边形ABCD是平行四边形,E是AB的中点,F是BC的中点,则S四边形DEBF:S四边形ABCD=_______.

(3)如图②,若四边形ABCD是平行四边形,且BE:AB=2:3,BF:BC=2:3,则S四边形DEBF:S四边形ABCD=_______.

探索规律:

如图③,在四边形ABCD中,若BE:AB=n:m,BF:BC=n:m,试猜想S四边形DEBF:S四边形ABCD=_______,请说明理由.

   解决问题:

   如图④,某小区角落有一四边形空地,为了充分利用空间,美化环境,想把它沿两侧墙壁改造为一块绿地,使绿地面积是原空地面积的3倍.请分别在两侧墙壁上确定点E、F,画出改造线DE、DF,并写出作法.

 

查看答案和解析>>


同步练习册答案