5.Q=aπD2.自变量是D.常量是aπ. 查看更多

 

题目列表(包括答案和解析)

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8cm,BC=6cm.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图2所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A、D1、D2、B始终在同一直线上),当点A与点B重合时,停止平移.设平移的速度是1cm/秒,平移的时间为x(秒),△AC1D1与△BC2D2重叠部分面积为y(cm2).
(1)求CD的长和斜边上的高CH;
(2)在平移过程中(如图3),设C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.那么四边形FD2D1E是否可能是菱形?为什么?如果可能,请求出相应的D1E=D2F的值;
(3)请写出y与x的函数关系式,以及自变量的取值范围;
(4)是否存在这样的x的值,使重叠部分面积为3cm2?若存在,求出相应的x的值;若不存在,请说明理由.

查看答案和解析>>

(2013•太原二模)如图,在直角坐标系中,等边△AOB的顶点A的坐标是(0,6),点B在第一象限,抛物线y=ax2-
2
3
3
x经过点B,与x轴交于点C,连接BC.
(1)求抛物线的表达式和∠ABC的度数;
(2)点D是△AOB的边上的一个动点,不与点O,B重合,若△COD是等腰三角形,则点D的坐标为
D1
3
,1),D2
3
,5),D3(0,2
3
),D4(3,
3
D1
3
,1),D2
3
,5),D3(0,2
3
),D4(3,
3

(3)点P是x轴上的一个动点,将△AOP绕点A旋转得到△ABP′.
①当点P与点C重合时,判断点P′是否在(1)中的抛物线上并说明理由;
②设△POP′的面积为S,直接写出S与x的函数关系式和相应的自变量x的取值范围.

查看答案和解析>>

(2013•甘井子区二模)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AC=
5
,BC=2
5
.绕点A将△ACD逆时针旋转90°形成△AC1D1,点P从点A出发沿线段AB以每秒一个单位长度的速度向点B运动,运动时间为t(秒),过点P作AB的垂线l,△AC1D1关于直线l的轴对称图形为△A1C2D2
(1)画出△AC1D1
(2)当点D2落在BC上时,t的值为
3.5
3.5
秒;
(3)令△A1C2D2与△BCD的重叠面积为S,求出S与t之间的函数关系式,并写出相应的自变量t的取值范围.

查看答案和解析>>

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=
14
S△ABC;若不存在,请说明理由.
精英家教网

查看答案和解析>>

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=S△ABC;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案