点A关于y轴对称.则a= 图3 12.一次函数y= –2x–3与x轴的交点坐标为 . 查看更多

 

题目列表(包括答案和解析)

函数y=
1
x-2
的图象可以由函数y=
1
x
的图象向右平移2个单位得到,则下列关于函数y=
1
x-2
的图象的性质,不正确的是(  )
A、它的图象是中心对称图形,对称中心点的坐标为(2,0)
B、当x>0时,y随x的增大而减小
C、当x>2时,y随x的增大而减小
D、它的图象与y轴交点坐标是(0,-
1
2

查看答案和解析>>

同学们知道,每一个实数都可以用数轴上唯一的一个点表示;反过来,数轴上的每一个点都表示唯一的一个实数.如图,数轴上表示1、
3
的对应点分别为A、B,若点A、B关于直线l对称,则直线l与数轴的交点所表示的实数是(  )

查看答案和解析>>

同学们知道,每一个实数都可以用数轴上唯一的一个点表示;反过来,数轴上的每一个点都表示唯一的一个实数.如图,数轴上表示1、
3
的对应点分别为A、B,若点A、B关于直线l对称,则直线l与数轴的交点所表示的实数是(  )
A.2-
3
B.2
3
-1
C.
3
+1
2
D.
3
-1
2

查看答案和解析>>

阅读材料:
例:说明代数式 x2+1 + (x-3)2+4 的几何意义,并求它的最小值.
解: x2+1 + (x-3)2+4 =" (x-0)2+12" + (x-3)2+22 ,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则 (x-0)2+12 可以看成点P与点A(0,1)的距离, (x-3)2+22 可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.
设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B="3" 2 ,即原式的最小值为3 2 .

根据以上阅读材料,解答下列问题:
(1)代数式 (x-1)2+1 + (x-2)2+9 的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B (2,3)的距离之和.(填写点B的坐标)
(2)代数式 x2+49 + x2-12x+37 的最小值为.

查看答案和解析>>

阅读材料:

例:说明代数式 x2+1 + (x-3)2+4 的几何意义,并求它的最小值.

解: x2+1 + (x-3)2+4 = (x-0)2+12 + (x-3)2+22 ,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则 (x-0)2+12 可以看成点P与点A(0,1)的距离, (x-3)2+22 可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.

设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=3 2 ,即原式的最小值为3 2 .

根据以上阅读材料,解答下列问题:

(1)代数式 (x-1)2+1 + (x-2)2+9 的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B (2,3)的距离之和.(填写点B的坐标)

(2)代数式 x2+49 + x2-12x+37 的最小值为.

 

查看答案和解析>>


同步练习册答案