如图:Rt△ABC中.∠C=90°.AB=13.BC=5.求AC的长 解:在Rt△ABC中,∠C= °, BC= , AB= , 根据勾股定理得 AB²= ²+ ² 所以 AB= = 查看更多

 

题目列表(包括答案和解析)

如图,Rt△ABC中∠C=90°、∠A=30°,在AC边上取点O画圆使⊙O经过A、B两点,
(1)求证:以O为圆心,以OC为半径的圆与AB相切.
(2)下列结论正确的序号是
①③④
①③④
.(少选酌情给分,多选、错均不给分)
①AO=2CO;
②AO=BC;
③延长BC交⊙O与D,则A、B、D是⊙O的三等分点.
④图中阴影面积为:(
1
3
π+
3
8
)•OA2

查看答案和解析>>

如图,Rt△ABC中∠C=90°、∠A=30°,在AC边上取点O画圆使⊙O经过A、B两点,
(1)求证:以O为圆心,以OC为半径的圆与AB相切.
(2)下列结论正确的序号是______.(少选酌情给分,多选、错均不给分)
①AO=2CO;
②AO=BC;
③延长BC交⊙O与D,则A、B、D是⊙O的三等分点.
④图中阴影面积为:(
1
3
π+
3
8
)•OA2

查看答案和解析>>

阅读与理解题.
阅读部分:如图1,△ABC中,∠BAC=45°,AD⊥BC于D,BD=3,DC=2,求△ABC的面积.
解:将△ADB、△ADC分别沿AB翻折得△ABE、△ACF延长EB、FC交于点G,易证四边形AEGF为正方形,设AD=x,则BG=x-3,CG=x-2,在Rt△BGC中,有BG2+GC2=BC2,即(x-3)2+(x-2)2=52  整理得x2-5x-6=0,解得x=6(x=-1舍去),进而求得S△ABC=15.
上述问题的解决方法,是将几何问题转化为代数问题,通过设元,建立方程模型,进而使问题得到了解决.那么代数问题能否用几何的方法解决呢?
理解部分:请在如图2Rt△ABC(∠C=90°)中,通过比例线段解方程:
x2+1
+
x2-24x+160
=13

查看答案和解析>>


同步练习册答案