勾股定理的作用:证明带有平方的问题,(3)实际应用. e线聚焦 [例]甲.乙两位探险者到沙漠进行探险.没有了水.需要寻找水源.为了不致于走散.他们用两部对话机联系.已知对话机的有效距离为15千米.早晨8:00甲先出发.他以6千米/时的速度向东行走.1小时后乙出发.他以5千米/时的速度向北行进.上午10:00.甲.乙二人相距多远?还能保持联系吗? 分析:要求甲.乙两人的距离.就要确定甲.乙两人在平面的位置关系.由于甲往东.乙往北.所以甲所走的路线与乙所走的路线互相垂直.然后求出甲.乙走的路程.利用勾股定理.即可求得甲.乙两人的距离. 解:如图.甲从上午8:00到上午10:00一共走了2小时. 走了12千米.即OA=12. 乙从上午9:00到上午10:00一共走了1小时. 走了5千米.即OB=5. 在Rt△OAB中.AB2=122十52=169.∴AB=13. 因此.上午10:00时.甲.乙两人相距13千米. ∵15>13. ∴甲.乙两人还能保持联系. 答:上午10:00甲.乙两人相距13千米.两人还能保持联系. 双基淘宝 u 仔细读题.一定要选择最佳答案哟! 查看更多

 

题目列表(包括答案和解析)

勾股定理的作用是在直角三角形中,已知两边求________________.勾股定理的逆定理的作用是用来证明________________

 

查看答案和解析>>


同步练习册答案