3.巧用分数加减法法则 故 y<-1. 查看更多

 

题目列表(包括答案和解析)

阅读下列材料,然后回答所提出的问题.
(1)
1
1×3
=
1
2
(1-
1
3
),
1
3×5
=
1
2
(
1
3
-
1
5
).
1
5×7
=
1
2
(
1
5
-
1
7
)

于是
1
1×3
+
1
3×5
+
1
5×7

=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+
1
2
(
1
5
-
1
7
)

=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
)

=
1
2
(1-
1
7
)=
3
7

(2)上面求的方法是通过逆用分数减法法则,将和式中各分数转化为两个分数之差,使得除首末两项外的中间各项可以互相抵消,从而达到求和的目的.
通过阅读,你学会一种解决问题的方法了吗?试用学到的方法计算:
1
x(x+3)
+
1
(x+3)(x+6)
+
1
(x+6)(x+9)

1
a(a+1)
+
1
(a+1)(a+2)
+
1
(a+2)(a+3)
+
1
(a+2006)(a+2007)

查看答案和解析>>

因为
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,…,
1
19×20
=
1
19
-
1
20

所以
1
1×2
+
1
2×3
+
1
3×4
+…+
1
19×20
=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
19
-
1
20
)=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
19
-
1
20
=1-
1
20
=
19
20

上面的求和的方法是通过逆用分数减法法则,将和式中各分数转化成两个数之差,使得除首、末两项外中间项可以互相抵消,从而达到求和的目的.通过阅读,你一定学会了一种解决问题的方法.请你用学到的方法计算:
(1)
1
1×2
+
1
2×3
+
1
3×4
+…+
1
(n-1)×n

(2)
1
2×4
+
1
4×6
+
1
6×8
+…+
1
98×100

查看答案和解析>>

阅读下列材料,然后回答所提出的问题.
(1)数学公式
于是数学公式
=数学公式
=数学公式
=数学公式
(2)上面求的方法是通过逆用分数减法法则,将和式中各分数转化为两个分数之差,使得除首末两项外的中间各项可以互相抵消,从而达到求和的目的.
通过阅读,你学会一种解决问题的方法了吗?试用学到的方法计算:
数学公式
数学公式数学公式

查看答案和解析>>

因为数学公式=1-数学公式数学公式=数学公式-数学公式数学公式=数学公式-数学公式,…,数学公式=数学公式-数学公式
所以数学公式+数学公式+数学公式+…+数学公式=(1-数学公式)+(数学公式-数学公式)+(数学公式-数学公式)+…+(数学公式-数学公式)=1-数学公式+数学公式-数学公式+数学公式-数学公式+…+数学公式-数学公式=1-数学公式=数学公式
上面的求和的方法是通过逆用分数减法法则,将和式中各分数转化成两个数之差,使得除首、末两项外中间项可以互相抵消,从而达到求和的目的.通过阅读,你一定学会了一种解决问题的方法.请你用学到的方法计算:
(1)数学公式+数学公式+数学公式+…+数学公式
(2)数学公式+数学公式+数学公式+…+数学公式

查看答案和解析>>

阅读下列材料,然后回答所提出的问题.
(1)
1
1×3
=
1
2
(1-
1
3
),
1
3×5
=
1
2
(
1
3
-
1
5
).
1
5×7
=
1
2
(
1
5
-
1
7
)

于是
1
1×3
+
1
3×5
+
1
5×7

=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+
1
2
(
1
5
-
1
7
)

=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
)

=
1
2
(1-
1
7
)=
3
7

(2)上面求的方法是通过逆用分数减法法则,将和式中各分数转化为两个分数之差,使得除首末两项外的中间各项可以互相抵消,从而达到求和的目的.
通过阅读,你学会一种解决问题的方法了吗?试用学到的方法计算:
1
x(x+3)
+
1
(x+3)(x+6)
+
1
(x+6)(x+9)

1
a(a+1)
+
1
(a+1)(a+2)
+
1
(a+2)(a+3)
+
1
(a+2006)(a+2007)

查看答案和解析>>


同步练习册答案