下列各组根式中,不为同类根式的是( ) A.与 B.与 C.与 D.与 查看更多

 

题目列表(包括答案和解析)

21、阅读并解答
看下面的问题:
从甲地到乙地,可以乘火车,也可以乘汽车.一天中,火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?
因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从甲地到乙地,所以共有   3+2=5种不同的走法.
一般地,有如下原理:
分类计数原理:完成一件事,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法…在第n类办法中有mn种不同的方法.那么完成这件事共有N=m1+m2+…+mn种不同的方法.
再看下面的问题:
从甲地到乙地,要从甲地先乘火车到丙地,再于次日从丙地乘汽车到乙地.一天中,火车有3班,汽车有2班,那么两天中,从甲地到乙地共有多少种不同的走法?
这个问题与前一问题不同.在前一问题中,采用乘火车或乘汽车中的任何一种方式,都可以从甲地到乙地.而在这个问题中,必须经过先乘火车、后乘汽车两个步骤,才能从甲地到达乙地.
这里,因为乘火车有3种走法,乘汽车有2种走法,所以乘一次火车再接乘一次汽车从甲地到乙地,共有  3×2=6种不同的走法.
一般地,有如下原理:
分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法…做第n步有mn种不同的方法.那么完成这件事共有
N=m1×m2×…×mn种不同的方法.
例:书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.
(1)从书架上任取1本书,有多少种不同的取法?
(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?
解:(1)从书架上任取1本书,有3类办法:第1类办法是从第1层取1本计算机书,有4种方法;第2类办法是从第2层取1本文艺书,有3种方法;第3类办法是从第3层取1本体育书,有2种方法.根据分类计数原理,不同取法的种数是
N=m1+m2+m3=4+3+2=9
答:从书架上任取1本书,有9种不同的取法.
(2)从书架的第1、2、3层各取1本书,可以分成3个步骤完成:第1步从第1层取1本计算机书,有4种方法;第2步从第2层取1本文艺书,有3种方法;第3步从第3层取1本体育书,有2种取法.根据分步计数原理,从书架的第1、2、3层各取1本书,不同取法的种数是N=m1×m2×m3=4×3×2=24
答:从书架的第1、2、3层各取1本书,有24种不同的取法.
完成下列填空:
(1)从5位同学中产生1名组长,1名副组长有
20
种不同的选法.
(2)如图,一条电路在从A处到B处接通时,可以有
8
条不同的路线.
(3)用数字0、1、2、3、4、5组成
288
个没有重复数字的六位奇数.
(4)一种汽车牌照由2个英文字母后接4个数字组成,且2个英文字母不能相同,则不同牌照号码的个数是
6500000

查看答案和解析>>

阅读并解答
看下面的问题:
从甲地到乙地,可以乘火车,也可以乘汽车.一天中,火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?
因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从甲地到乙地,所以共有3+2=5种不同的走法.
一般地,有如下原理:
分类计数原理:完成一件事,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法…在第n类办法中有mn种不同的方法.那么完成这件事共有N=m1+m2+…+mn种不同的方法.
再看下面的问题:
从甲地到乙地,要从甲地先乘火车到丙地,再于次日从丙地乘汽车到乙地.一天中,火车有3班,汽车有2班,那么两天中,从甲地到乙地共有多少种不同的走法?
这个问题与前一问题不同.在前一问题中,采用乘火车或乘汽车中的任何一种方式,都可以从甲地到乙地.而在这个问题中,必须经过先乘火车、后乘汽车两个步骤,才能从甲地到达乙地.
这里,因为乘火车有3种走法,乘汽车有2种走法,所以乘一次火车再接乘一次汽车从甲地到乙地,共有  3×2=6种不同的走法.
一般地,有如下原理:
分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法…做第n步有mn种不同的方法.那么完成这件事共有
N=m1×m2×…×mn种不同的方法.
例:书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.
(1)从书架上任取1本书,有多少种不同的取法?
(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?
解:(1)从书架上任取1本书,有3类办法:第1类办法是从第1层取1本计算机书,有4种方法;第2类办法是从第2层取1本文艺书,有3种方法;第3类办法是从第3层取1本体育书,有2种方法.根据分类计数原理,不同取法的种数是
N=m1+m2+m3=4+3+2=9
答:从书架上任取1本书,有9种不同的取法.
(2)从书架的第1、2、3层各取1本书,可以分成3个步骤完成:第1步从第1层取1本计算机书,有4种方法;第2步从第2层取1本文艺书,有3种方法;第3步从第3层取1本体育书,有2种取法.根据分步计数原理,从书架的第1、2、3层各取1本书,不同取法的种数是N=m1×m2×m3=4×3×2=24
答:从书架的第1、2、3层各取1本书,有24种不同的取法.
完成下列填空:
(1)从5位同学中产生1名组长,1名副组长有______种不同的选法.
(2)如图,一条电路在从A处到B处接通时,可以有______条不同的路线.
(3)用数字0、1、2、3、4、5组成______个没有重复数字的六位奇数.
(4)一种汽车牌照由2个英文字母后接4个数字组成,且2个英文字母不能相同,则不同牌照号码的个数是______.

查看答案和解析>>

观察下列等式12×231=132×21
13×341=143×31
23×352=253×32
34×473=374×43
62×286=682×26

以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同的规律,我们称这类等式为“数字对称等式”.
(1)根据上述各式反应的规律填空,使式子称为“数字对称等式”.
①52×
275
275
=
572
572
×25
63
63
×396=693×
36
36

(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9则等式右边的两位数可表示为
10b+a
10b+a
,等式右边的三位数可表示为
100a+10(a+b)+b
100a+10(a+b)+b

(3)在(2)的条件下,若a-b=5,等式左右两边的两个三位数的差;
(4)等式左边的两位数与三位数的积能否为2012?若能,请求出左边的两位数;若不能,请说明理由.

查看答案和解析>>

观察下列等式12×231=132×21
13×341=143×31
23×352=253×32
34×473=374×43
62×286=682×26

以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同的规律,我们称这类等式为“数字对称等式”.
(1)根据上述各式反应的规律填空,使式子称为“数字对称等式”.
①52×________=________×25
②________×396=693×________
(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9则等式右边的两位数可表示为________,等式右边的三位数可表示为________;
(3)在(2)的条件下,若a-b=5,等式左右两边的两个三位数的差;
(4)等式左边的两位数与三位数的积能否为2012?若能,请求出左边的两位数;若不能,请说明理由.

查看答案和解析>>

观察下列等式12×231=132×21
13×341=143×31
23×352=253×32
34×473=374×43
62×286=682×26

以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同的规律,我们称这类等式为“数字对称等式”.
(1)根据上述各式反应的规律填空,使式子称为“数字对称等式”.
①52×______=______×25
②______×396=693×______
(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9则等式右边的两位数可表示为______,等式右边的三位数可表示为______;
(3)在(2)的条件下,若a-b=5,等式左右两边的两个三位数的差;
(4)等式左边的两位数与三位数的积能否为2012?若能,请求出左边的两位数;若不能,请说明理由.

查看答案和解析>>


同步练习册答案