题目列表(包括答案和解析)
若
=2,则(2a-5)2-1的立方根是( )
A.4 B.2 C.±4 D.±2
| A.4 | B.2 | C.±4 | D.±2 |
平面内的两条直线有相交和平行两种位置关系.
(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;
![]()
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明);
![]()
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.
阅读理解:对于任意正实数a、b,∵
≥0,∴
≥0,
∴
≥
,只有当a=b时,等号成立.
结论:在
≥
(a、b均为正实数)中,若ab为定值p,则a+b≥
,只有当a=b时,a+b有最小值
.
(1)根据上述内容,回答下列问题:现要制作一个长方形(或正方形),使镜框四周围成的面积为4,请设计出一种方案,使镜框的周长最小。
设镜框的一边长为m(m>0),另一边的为
,考虑何时时周长
最小。
∵m>0,
(定值),由以上结论可得:
只有当m= 时,镜框周长
有最小值是 ;
(2)探索应用:如图,已知A(-3,0),B(0,-4),P为双曲线
(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时△OAB与△OCD的关系.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com