如图,在梯形ABCD中, AD//BC, AD : BC =1:2, 点E在AC上, AE : EC=1 : 3, 那么S△ABE: S△BCE : S△ADC等于-- ( ) 1:2:3; 1:3:3. 查看更多

 

题目列表(包括答案和解析)

如图①在梯形ABCD中,AD∥BC。AB=DC
(1)如果点P,E和F分别是BC,AC和BD的中点,证明:AB=PE+PF
(2)如果点P是线段BC上任意一点(中点除外),PE∥AB,PF∥DC,如图②所示,那么AB=PE+PF这个结论还成立吗?请说明理由
(3)如果点P在线段BC的延长线上, PE∥AB,PF∥DC,其他条件不变,那么结论AB=PE+PF是否成立?直接写出结论,不必证明。

查看答案和解析>>

如图①在梯形ABCD中,AD∥BC。AB=DC

(1)如果点P,E和F分别是BC,AC和BD的中点,证明:AB=PE+PF

(2)如果点P是线段BC上任意一点(中点除外),PE∥AB,PF∥DC,如图②所示,那么AB=PE+PF这个结论还成立吗?请说明理由

(3)如果点P在线段BC的延长线上, PE∥AB,PF∥DC,其他条件不变,那么结论AB=PE+PF是否成立?直接写出结论,不必证明。

 

查看答案和解析>>

如图①在梯形ABCD中,AD∥BC。AB=DC
(1)如果点P,E和F分别是BC,AC和BD的中点,证明:AB=PE+PF
(2)如果点P是线段BC上任意一点(中点除外),PE∥AB,PF∥DC,如图②所示,那么AB=PE+PF这个结论还成立吗?请说明理由
(3)如果点P在线段BC的延长线上, PE∥AB,PF∥DC,其他条件不变,那么结论AB=PE+PF是否成立?直接写出结论,不必证明。

查看答案和解析>>

如图,梯形ABCD中,BC∥AD,∠ABC=,对角线AC与BD相交于O,AB=8cm,AD=10cm,BC=6cm,一个动点E从点B出发,以每秒1cm的速度沿射线BA方向移动,过E作EQ⊥AB,交直线AC于P,交直线BD于Q,以PQ为边向上作正方形PQMN,设正方形PQMN与△BOC,重叠部分的面积为s,点E的运动时间为t秒.
(1)求PQ经过O 点时的运动时间t;
(2)求s与t的函数关系式,并求s的最大值;
(3)如图(2),若AB的中点为H,DK=1,过H作HT∥AD,交BD于T,交BK于G,求G在正方形PQMN内部时t的取值范围。
  

查看答案和解析>>

如图,梯形ABCD中,BC∥AD,∠ABC=,对角线AC与BD相交于O,AB=8cm,AD=10cm,BC=6cm,一个动点E从点B出发,以每秒1cm的速度沿射线BA方向移动,过E作EQ⊥AB,交直线AC于P,交直线BD于Q,以PQ为边向上作正方形PQMN,设正方形PQMN与△BOC,重叠部分的面积为s,点E的运动时间为t秒.

(1)求PQ经过O 点时的运动时间t;

(2)求s与t的函数关系式,并求s的最大值;

(3)如图(2),若AB的中点为H,DK=1,过H作HT∥AD,交BD于T,交BK于G,求G在正方形PQMN内部时t的取值范围。

 

  

                

 

查看答案和解析>>


同步练习册答案