10.在△ABC中.AB=AC.∠A=36度.BD平分∠ABC交AC于D.则图中共有等腰三角形的个数是 ( ) A.1 B.2 C.3 D.4 查看更多

 

题目列表(包括答案和解析)

已知:如图,在Rt△ABC中,∠C=90°,D是AC上一点,DE⊥AB于E,且DE=DC.

(1)求证:BD平分∠ABC;

(2)若∠A=36°,求∠DBC的度数.

查看答案和解析>>

我们知道:将一条线段AB分割成大小两条线段AC、CB,若小线段CB与大线段AC的长度之比等于大线段AC与线段AB的长度之比,即这种分割称为黄金分割,点C叫做线段AB的黄金分割点.

(1)类似地我们可以定义,顶角为36°的等腰三角形叫黄金三角形,其底与腰之比为黄金数,底角平分线与腰的交点为腰的黄金分割点.如图,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分线CD交腰AB于点D,请你说明D为腰AB的黄金分割点的理由.

(2)若腰和上底相等,对角线和下底相等的等腰梯形叫作黄金梯形,其对角线的交点为对角线的黄金分割点.如图,AD∥BC,AB=AD=DC,AC=BD=BC,试说明O为AC的黄金分割点.

(3)如图,在Rt△ABC中,∠ACB=90°,CD为斜边AB上的高,∠A、∠B、∠ACB的对边分别为a、b、c.若D是AB的黄金分割点,那么a、b、c之间的数量关系是什么?并证明你的结论.

查看答案和解析>>

数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它的某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答问题(1).

(1)如图1,在△ABC中,AB=AC,∠A=36°,直线BD平分∠ABC交AC于点D.

求证:△ABD与△BDC都是等腰三角形.

(2)在证明了该命题后,小颖发现:下列两个等腰三角形如图2、图3也具有这种特性.请你在图2、图3中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所画等腰三角形两个底角的度数.

查看答案和解析>>


同步练习册答案