21.已知直线.当n=1时.直线与 x轴和y轴分别交于点和,设△ (O是平面直角坐标系的原点)的面积为,当n=2时.直线与x轴和y轴分别交于点和.设△的面积为.-,依此类推,直线与x轴和y轴分别交于点,设的面积为. (1)求△的面积,(2)求的值. 查看更多

 

题目列表(包括答案和解析)

在直角梯形中,,高(如图1)。动点同时从点出发,点沿运动到点停止,点沿运动到点停止,两点运动时的速度都是。而当点到达点时,点正好到达点。设同时从点出发,经过的时间为时,的面积为(如图2)。分别以为横、纵坐标建立直角坐标系,已知点边上从运动时,的函数图象是图3中的线段

(1)分别求出梯形中的长度;

(2)写出图3中两点的坐标;

(3)分别写出点边上和边上运动时,的函数关系式(注明自变量的取值范围),并在图3中补全整个运动中关于的函数关系的大致图象。

查看答案和解析>>

定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形。
探究:(1)如图甲,已知△ABC中∠C=90 °,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由。
(2)一般地,“任意三角形都是自相似图形”,只要顺次连结三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形,我们把△DEF(图乙)第一次顺次连结各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分割,称为2阶分割(如图2)……依次规则操作下去,n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为Sn
①若△DEF的面积为1000,当n为何值时,3<Sn<4?
②当n>1时,请写出一个反映Sn-1,Sn,Sn+1之间关系的等式(不必证明)

查看答案和解析>>

定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则称这种抛物线为“美丽抛物线”。
已知,如图一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…Bn(n,yn)(n是正整数)依次是直线上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0)(n是正整数),设x1=a(0<a<1)。则当a=(    )时,这组抛物线中存在美丽抛物线。

查看答案和解析>>

在直角梯形ABCD中,∠C=90°,高CD=6cm(如图1),动点P,Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到C点停止,两点运动时的速度都是1cm/s。而当点P到达点A时,点Q正好到达点C,设P,Q同时从点B出发,经过的时间为t(s)时,△BPQ的面积为y(cm2)(如图2),分别以x,y为横、纵坐标建立直角坐标系,已知点P在AD边上从A到D运动时,y与t的函数图象是图3中的线段MN。
(1)分别求出梯形中BA,AD的长度;
(2)写出图3中M,N两点的坐标;
(3)分别写出点P在BA边上和DC边上运动时,y与t的函数关系式(注明自变量的取值范围),并在图3中补全整个运动中关于的函数关系的大致图象。

查看答案和解析>>

已知:如图,直线l:经过点,一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…,An+1(xn+1,0)(n为正整数),设x1=d(0<d<1)。
(1)求b的值;
(2)求经过点A1、B1、A2的抛物线的解析式(用含d的代数式表示);
(3)定义:若抛物线的顶点与x轴的两个交点构成的三角形,则这种抛物线就称为“美丽抛物线”。
探究:当d(0<d<1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,清你求出相应的d 的值。

查看答案和解析>>


同步练习册答案